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Thermal photon emission rates can be calculated by 

Viscous Photon Emission Rates: General Formalism
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Equilibrium rates

Hadron GasQGP

q
dR

d3q
= Γ0 +

⇡ µ⌫q̂µ q̂⌫

2(e+ p)
a↵ βΓ

↵ β

Viscous Photon Emission Rates: General Formalism

6(15)

(AMY 2001)

(TRG 2004)



Equilibrium rates

Hadron GasQGP
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Equilibrium rates

Hadron GasQGP

off-equilibrium    correctionsδf

q
dR

d3q
= Γ0 +

⇡ µ⌫q̂µ q̂⌫

2(e+ p)
a↵ βΓ

↵ β

Self-energy

⌃ = ⌃0 + ⇡ µ⌫⌃1µ⌫

Viscous Photon Emission Rates: General Formalism

6(15)Shen, Paquet et al. (2014)
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vdir
n (pT ) =

Rγ (pT )vincl
n (pT ) − vbg

n (pT )

Rγ (pT ) − 1
Rγ =

N γ i n cl

N γbg

exact for a single event

Definition of event-by-event  vγ ,dir
n
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vdir
n { SP} (pT ) =

R̄γ (pT )hvincl
n { SP} (pT )i − hvbg

n { SP} (pT )i

R̄γ (pT ) − 1

“extraction safe”

Poster:!
J-F. Paquet, G21









Fluctuation effects on photon elliptic flow
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Fluctuation effects on photon elliptic flow

⌘/ s = 0.08

‣ Initial fluctuations increase photons’ elliptic flow
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Fluctuation effects on photon elliptic flow

⌘/ s = 0.08

‣ Initial fluctuations increase photons’ elliptic flow

‣ The additional photon multiplicity weighting biases    

e-b-e v2 towards central collisions, resulting in 

~10-20% smaller v2 compared to smooth hydro

~20%

~10%
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Event-by-Event Full Viscous Photon vn

• The anisotropic flows of photons show similar centrality 

dependence as hadron vn
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v2

v3

MCGlb.
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⌘/ s = 0.20
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• The ratio v2/v3 increases with the shear viscosity

• The centrality dependence of this ratio is stronger for 

the MCKLN model, driven by "2



Event-by-Event Full Viscous Photon vn

⌘/ s = 0.20

0-20% @ RHIC 20-40% @ RHIC 0-40% @ LHC

MCGlb ⌘/ s = 0.08

MCKLN

Thermal + pQCD
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RHIC 0-20% LHC 0-40%

Comparisons with exp. data

• Current calculations still underestimate the experimental 

data by a factor of 3
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RHIC 0-20% LHC 0-40%

Comparisons with exp. data

• Current calculations still underestimate the experimental 

data by a factor of 3
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• Thermal yield is also missing in the azimuthally 

integrated photon spectra at low pT



EM decays of short-lived resonances (I)

Contributions from the short-lived resonances:
Thanks to Ralf Rapp and EMMI RRTF 
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Pre-equilibrium flow (I)

Contributions from pre-equilibrium flow and       :⇡ µ⌫

14(15)



Pre-equilibrium flow (II)

Contributions from pre-equilibrium flow and       :⇡ µ⌫

Free-streaming

Tµ⌫(⌧s,~x) =

Z
d3p

E
pµp⌫f (⌧s,~x, p)

= euµu⌫− (P+ ⇧ )∆ µ⌫+ ⇡ µ⌫
Tµ⌫u⌫= euµ

f (⌧s,~x, ~p) = f (⌧0,~x − ~̂p(⌧s − ⌧0),~p)
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• We studied photon spectra and their anisotropic flows vn from event-

by-event viscous hydrodynamic medium 

!

!

• Shear viscosity suppresses photon vn. Dominant suppression 

comes not from flow, but from the viscous correction to the 

production rates. 

• Elliptic and triangular flow of photons are more sensitive than 

hadrons to shear stress at early times and to initial state fluctuations.  

• Short-lived resonance decays and pre-equilibrium flow cause 

measurable increase of direct photon anisotropic flow. 

• Still, experimental data appear to require significantly more photon 

rate from the late evolution stage than in implemented in the model 

Conclusions

arXiv: 1308.2111, 1308.2440, 1403.7558 https://github.com/chunshen1987/iEBE.git 15(15)
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R. Rapp 
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Viscous corrections:

For small g, diagrammatic approach agrees with 

kinetic approach

For g = 2, the deviations at small k/T may originate 

from different higher order           contributions O(g2T )

Photon Rates (QGP 2 to 2 processes only)
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Photon Emission Rates QGP vs HG
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Pre-equilibrium flow effects on hadrons

Dashed: with initial flow 

Solid: without initial flow



Emission vs. Temperature

High pT photons are mostly emitted from high 

temperature region

Peak photon production around T = 165-200 MeV 

due to large hydrodynamic space-time volume

13(27)



Thermal Photon Spectra

With all available thermal emission sources, our current 

calculations still underestimate measured direct photon 

spectra at low pT at both RHIC and LHC energies

Additional emission sources need to be included to 

improve the agreement between theory and data
7(23)
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