

Measurements of the space-time extent of the emission source in d+Au and Au+Au collisions through charged pion interferometry

 $at \sqrt{sNN} = 200 \text{ GeV}$ arXiv:1404.4946

PH総ENIX

Nuggehalli Ajitanand (Stony Brook University) for the PHENIX Collaboration

•1. Motivation

Long range azimuthal correlations in central p+A collision show characteristic patterns similar to those in A+A collisions.

They can be reproduced by CGC model as well as viscous hydro model.

d+Au HBT measurements provide new testing grounds for these models.

•2. HBT Analysis

Two-particle Space-Time Correlation Function $C(q) \approx \int dr |\phi(r,q)|^2 S(r,q)$

 $r = pair separation q = relative momentum S = source function <math>\phi = final state interactions$

 q_{side} - is perpendicular to the beam direction q_{out} - is parallel to the average transverse momentum of the pair q_{long} - is along the beam direction

$$C(q_{side}, q_{out}, q_{long}) = (1 - \lambda) + \lambda(1 + G)Fc$$
, Fc=Coulomb Correction

G=exp
$$(-R_{side}^2 q_{side}^2 - R_{out}^2 q_{out}^2 - R_{long}^2 q_{long}^2)$$

(Pratt)

HBT radii obtained by doing a fit of C to

$$C_{expt}$$
 (q)=A(q)/B(q)

A(q) = q dist. for same event pion pairs B(q) = q dist. for different event pion pairs (Sinyukov)

•3. Detector and Data collection

Run 7	200 GeV/c	Au+Au	3.6B evnts
Run 8	200 GeV/c	d+Au	1.0B evnts

Pion Identification was done in TOF-E and PbSc

•4 $N_{part}^{1/3}$ dependence and \overline{R} scaling

HBT radii (R_{side} , R_{out} , R_{long}) vs $N_{part}^{1/3}$ shows mismatched behavior

Npart \implies Initial system size \overline{R} from Glauber Model

R_{side} , R_{inv} vs \overline{R} shows proper scaling behavior.

•5 m_T dependence

nnajit@rcf.rhic.bnl.gov

 R_{side} , R_{out} , R_{long} vs m_T for central d+Au and peripheral Au+Au show similar dependence consistent with an expansion scenario Blast Wave fits shown for R_{side} , R_{long}

•6 Discussion and conclusion

Linear trend for the HBT radii vs $N_{part}^{1/3}$ but d+Au points not in line with Au+Au points.

d+Au points line up with Au+Au data and p+Pb points line up with Pb+Pb when \overline{R} scaling used

HBT radii of (p,d) +A and A+A scale with \overline{R}

d+Au m_T dependence similar to that for Au+Au i.e. evidence of expansion seen in Au+Au is also seen in d+Au

Conclusion: Final state scattering effects play an important role in the dynamics of the d+Au system

References

•Scott Pratt. Coherence and coulomb effects on pion interferometry. *Physical Review D*, 33(1), January 1986.

•Yu.M. Sinyukov et al. Coulomb corrections for interferometry analysis of expanding hadron systems. *Physics Letters B*, 432:248–257, 1998.

Acknowledgments

Nuclear Chemistry Group, Stony Brook University
PHENIX collaboration