Effect of gluon Bremsstrahlung on the transport of heavy quark in Quark Gluon Plasma

Surasree Mazumder, Variable Energy Cyclotron Centre, Kolkata, India

Quark Matter, 2014, Darmstadt, Germany

Charm Quark as probe of QGP: Why?

- Produced due to early hard collisions.
- Unlikely to be produced in QGP, mass is greater than temperature of QGP.
- Probability of creation and annihilation is very small: Therefore, the numbers of charm anti charm remain constant.
- Charm is out of equilibrium whereas the medium is in local thermal equilibrium.

Charm interaction with QGP

- Elastic binary scattering:
 \[C + q \rightarrow C + q, \quad C + q \rightarrow C + q, \quad C + g \rightarrow C + g \]
- Gluon bremsstrahlung:
 \[C + q / q / g \rightarrow C + q / q / g + g \]
- Coordinate system:
 \[\vec{q} = (\vec{q}_1, q_z) = k_1 - k_3; k_5 = (E_k = k_1 \cdot \csc \theta, \vec{k}_1, k_1 = k_\perp \cot \theta) \]
- Approximations used:
 Soft + eikonal1 + eikonal2
- Heirarchy taken:
 \[\sqrt{s} >> q_\perp >> E_s >> k_\perp >> m_0 >> \Lambda_{QCD} \]

Radiative transport coefficients

Charm quark follows Fokker Planck Equation

\[\frac{\partial f}{\partial t} = \frac{\partial}{\partial k_{1i}} \left[A_i(k_{1}) f + \frac{\partial}{\partial k_{1j}} \left\{ B_{ij}(k_{1}) f \right\} \right] \]

- drag
- diffusion

\[X(\vec{k}_1, T) = \frac{1}{2E_1} \int \text{Phase space} \times \text{interaction} \times \text{transport} \]

\[X_{\text{radiative}} = X_{\text{elastic}} \times \int \frac{d^3 k_5}{(2\pi)^3 2E_5} 12 g_s^2 \frac{1}{k_\perp^2} (1 + \frac{m^2}{s} e^{2\eta})^{-2} (1 + f(k_5)) \Theta(\tau - \tau_F) \Theta(E_1 - E_5) \]

\[X_{\text{total}} = X_{\text{elastic}} + X_{\text{radiative}} \]

Equilibrium dist. of charm, \(\eta / s \) of QGP and gluon radiation

- Equilibrium dist. of charm is far from that of Boltzman, rather it follows Tsallis class of distribution.
- Radiation has no effect on the shape of the dist. func. Of charm

\[\eta / s \text{ estimated by calculating transport parameter, } \hat{q} = 4B_\perp \]

\[4\pi \frac{\eta}{s} \approx 1.25 \pi \frac{T^3}{B_\perp} \]