

Physics Motivation

Due to their large masses, heavy quarks (charm and beauty) are predominantly produced via hard scattering in the initial phase of the collision. In heavy ion collisions:

- They experience the full evolution of the system, losing energy while interacting with the medium.
- ➡ Theoretical models predict different energy loss for gluons, light quarks and heavy quarks:

$\Delta E_{g} > \Delta E_{(u,d,s)} > \Delta E_{c} > \Delta E_{b}$

→ Nuclear modification factor is an observable sensitive to energy loss. It is defined as:

```
R_{\rm AA}(p_{\rm T}) = \frac{dN_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle d\sigma_{\rm pp}/dp_{\rm T}}
```

son production in Pb–Pb collisions with the ALICE

N	XXIV	QUARK	MATTER
	DARA	<i>ISTADT</i>	2014

D⁺ meson Reconstruction

12

D⁺ mesons are fully reconstructed in the following hadronic decay mode:

 $D^+ \rightarrow K^- \pi^+ \pi^+$ (Branching Ratio = $(9.13 \pm 0.19)^{\circ}$)

```
The signal extraction for this hadronic decay is based on the invariant
mass analysis of fully reconstructed decay topologies displaced from the
primary vertex.
```

Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV, min. bias 180 This requires very good impact parameter measurement provided by the Inner 140 Tracking System (ITS) 120 5 Simulation with residual misalignment (only id. pions for $p_{+} < 2 \text{ GeV/c}$)

Renu Bala, for the ALICE collaboration University of Jammu, India

Experimental Setup

ALICE (A Large Ion Collider Experiment) is specifically optimized for the study of heavy-ion collisions at the LHC.

The main detectors of ALICE, used in this analysis are the:

- ➡ Inner Tracking System (ITS),
- \rightarrow Time Projection Chamber (TPC),
- \rightarrow Time Of Flight (TOF)

Track reconstruction: with ITS and TPC in $\eta < |0.9|$

 $\langle T_{AA} \rangle$ is the average nuclear overlap function from Glauber model

Particle identification with TPC and TOF via the measurement of the specific energy loss dE/dx and of the time of flight \Rightarrow separate pions and kaons up to 2 GeV/*c*

Raw Yield Extraction

Analysis Strategy

TPC

Main Selection: displaced-vertex topology

- → good pointing of reconstructed D momentum to the primary vertex
- → distance between primary and secondary vertex.

Particle Identification (PID) with the TPC and TOF information helps to reduce the background at low $p_{\rm T}$

 \Rightarrow 3 σ cut on the difference between the measured signals in TPC and TOF and those expected for the given particle species.

1.5

2

- ➡ The fit function comprises a Gaussian term describing the signal and an exponential term for the background
- ➡ Fig. shows the invariant mass spectra in 8 $p_{\rm T}$ intervals in the range $3 < p_T < 36 \text{ GeV/c for Pb-Pb collisions}$ at $\sqrt{s_{\rm NN}} = 2.76$ TeV, centrality class 0-7.5%

 $\sigma = 0.020 \pm 0.005$

3<p_<4 GeV/0

Pb-Pb,√s_{NN}=2.76 TeV Centrality: 0-7.5%15.8M evts

6<p_<8 GeV/0

 $\mu = 1.873 \pm 0.002$

S (3σ)= 402 ± 77

S/B (3σ)= 0.0680

pp reference

 $S/B(3\sigma) = 0.3153$

 $\sigma = 0.021 \pm 0.009$

Correction

ALI-PERF-32519

Sources of Systematic Uncertainties

D⁺ meson raw yields extracted from the fits to the invariant mass spectra corrected for: **acceptance x efficiency**: correction factor from MC simulation **B feed down Subtraction:**

➡Contribution of D⁺ mesons from B decays evaluated using a MC estimate based on FONLL predictions

 \rightarrow Hypothesis on the R_{AA} of feed down D⁺ mesons (sensitive to b-quark in-medium energy loss): R_{AA} $(\text{feed-down}) = 2 R_{AA} \text{ (prompt)}$. Systematic uncertain ties estimated by varying the hypothesis in the the range $1 < R_{AA}$ (feed down)/ R_{AA} (prompt) < 3.

 $D^+ \rightarrow K^- \pi^+ \pi^+$ ⁻ Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0-7.5% centrality ALICE PERFORMANCE 10⁻² 27/07/2012 Prompt D⁺ --- Prompt D⁺, No PID D⁺ from b 30 35 25 20 15 p_⊤ (GeV/c)

-20000^l

ALI-PUB-15291

0.5

→ Yield extraction: different fit range, function for background (polynomial), signal extraction techniques (bin counting after background subtraction vs fit function integral)

- → Topological Selections : repeat the analysis with different selection criteria
- ➡ PID efficiency: evaluate the PID selection effect, repeating the analysis without PID
- ➡ Tracking efficiency: different track selection criteria
- \rightarrow MC $p_{\rm T}$ shape : evaluate the efficiencies with different
- generated D meson $p_{\rm T}$ distributions
- \rightarrow Normalization uncertainty on pp reference and T_{AA}

→ Reference at \sqrt{s} = 2.76 TeV obtained via energy scaling of $\sqrt{s}=7$ TeV data using the ratio of FONLL predictions at the two energies

➡ Good agreement with 2.76 TeV data \rightarrow limited statistics (58) M events) $\rightarrow 2 < p_T < 12 \text{ GeV}/c$

➡ Lack of pp reference for $p_{\rm T}>24~{\rm GeV}/c$: 7 TeV measurement extrapolated to higher $p_{\rm T}$ based on FONLL $p_{\rm T}$ shape

Results

D meson R_{AA} as a function of p_T

D meson R_{AA} as a function of Centrality

2.5 3 p (GeV/c)

Summary

- → D meson R_{AA} shows a suppression of factor 4-5 at p_T >5 GeV/cin central collisions.
- Consistent measurement among the different D meson species.
- \rightarrow D meson R_{AA} reproduced within uncertainties by models including in-medium energy loss.
- → Suppression increases from peripheral to central collisions.

- Difference between R_{AA} of D-mesons (ALICE) and non prompt J/ψ from B decays (CMS) in central collisions—described by theoretical models including mass dependent energy loss.

References

1] B. Abelev et al. [ALICE Collaboration], JHEP 1209 (2012) 112 [2] B. Abelev et al. [ALICE Collaboration], JHEP 1207 (2012) 191 BAMPS: J. Phys. G 38 (2011)124152 WHDG: J. Phys. G 38 (2011) 124114 Vitev et al.: Phys. Rev. C 80 (2009) 05490 POWLANG: J. Phys. G 38 (2011) 124144 TAMU elastic: arXiv:1401.3817 [nucl-th] (2014) WHDG rad+coll: Nucl. Phys. A 872 (2011) 265 Vitev, rad+dissoc: Phys. Rev. C 80 (2009) 054902 Djordjevic: arXiv:1307.4098