D⁺-meson reconstruction in pp collisions $\sqrt{s} = 8$ TeV with the **ALICE Detector**

Ankita Sharma, for the ALICE Collaboration

University of Jammu, India

Physics Motivation

- > Heavy quarks (charm and beauty) are powerful probes to investigate the properties of the hot and dense medium created in heavy-ion collisions.
- > Due to their large mass heavy quarks are mainly produced in the hard partonic scattering processes occurring in the early stages of the collision.

Experimental Set Up and Data sample

- > A Large Ion Collider Experiment (ALICE) is one of the four main experiments at the Large Hadron Collider (LHC) at CERN.
- \succ ALICE is optimized to study heavy-ion collisions.
- \succ The detectors that are relevant for the D meson analysis are:
- Inner Tracking System (ITS): tracking and vertexing

- > The produced heavy quarks travel through the medium, experiencing all the stages of its evolution and finally hadronize.
- > Measurements of charm hadron production cross sections in pp collisions at LHC energies provide an important test of pQCD calculations and the necessary reference for the results from p-A and A-A collisions.
- \succ The inclusive p_{T} differential production cross section of D⁺ meson has been measured in pp collisions at $\sqrt{s} = 2.76$ TeV within $2 < p_T < 12$ GeV/c and at 7 TeV within $1 < p_T < 24 \text{ GeV}/c$.
- > Precise p_{τ} -differential measurements at high p_{τ} are still missing.

(ALICE Coll., JHEP01 (2012) 128)

$D^+ \rightarrow K^- \pi^+ \pi^+$: Reconstruction Strategy

signal extraction is based on meson invariant mass analysis of fully reconstructed decay topologies displaced from the primary vertex.

- Time Projection Chamber (TPC): tracking and dE/dx for PID • Time of Flight (TOF): time-of-flight for PID
- **Data Sample used:**

pp collisions at \sqrt{s} = 8 TeV

Triggers used to analyze the data are

Minimum Bias Trigger: based on signal in the V0 scintillators in coincidence with a bunch crossing.

EMCAL LO Trigger: based on the energy deposit in the EMCAL detector. Number of events MB = 113 M EMCAL L0 = 35 M

D⁺ Signal in different p_{T} intervals at $\sqrt{s} = 8$ TeV with EMCAL L0 trigger

Branching Ratio = $9.13 \pm 0.19\%$ ct ≈ 312 µm,

- ✓ Build triplets tracks with Of correct combination of charge signs and large impact parameters.
- \checkmark Particle identification with TPC and TOF to reduce background.
- \checkmark Calculate the vertex of the tracks.
- ✓ Selection criteria based on distance between primary and decay vertices and pointing of the reconstructed D⁺ meson momentum to the primary vertex.
- \checkmark D⁺ yield is extracted by fitting the invariant mass distribution with a Gaussian function for the signal and an exponential function to

Significance Comparison

D⁺ Signal in different p_{T} intervals at $\sqrt{s} = 8$ TeV with MB trigger

model the background.

D⁺ Fit Parameters peak position and width

Summary and outlook

 \triangleright Analysis performed on the data sample of pp collisions at \sqrt{s} = 8 TeV collected in 2012

>D⁺ meson signal is visible in both MB and EMCAL L0 triggered samples.

>EMCAL L0 triggered sample allows one to extract the signal up to higher transverse momentum as compared to MB trigger.

>Ongoing efforts towards cross section calculation.