Measurements of the heavy-flavour nuclear modification factor in p-Pb collisions at $\sqrt{s_{\text{NN}}}=5.02$ TeV with ALICE at the LHC

Shuang Li for the ALICE Collaboration

Institute of Particle Physics, CCNU, Wuhan, China
Key Laboratory of Quark & Lepton Physics, MoE, China
Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand, France
Outline

- Motivation
- Heavy-flavour measurements with ALICE
- Production cross section and nuclear modification factor in p-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV
 - D mesons
 - Heavy-flavour decay electrons
 - Heavy-flavour decay muons
- Conclusion
Heavy flavours in p-Pb collisions: motivation

- Heavy quarks (charm and beauty) produced in initial hard scatterings and experience the full evolution of the medium

- Control experiment for Pb-Pb measurements

- Cold nuclear matter effects
 - nuclear modification of Parton Distribution Functions
 - shadowing / gluon saturation at low Bjorken-x

 - energy loss

 - multiple collisions

- Investigation by means of the nuclear modification factor

\[
R_{pA} = \frac{1}{\langle T_{pA} \rangle} \frac{dN_{pA}/dp_T}{d\sigma_{pp}/dp_T} = \frac{1}{A} \frac{d\sigma_{pA}/dp_T}{d\sigma_{pp}/dp_T}
\]

K. J. Eskola et al., JHEP 0904 (2009) 65
F. Dominguez et al., arXiv:1109.1250 [hep-ph]
F. Arleo et al., arXiv:1204.4609 [hep-ph]
C. Lourenco et al., JHEP 0902 (2009) 014
Data samples

<table>
<thead>
<tr>
<th>Observable</th>
<th>Data sample</th>
<th>Integrated luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>D mesons</td>
<td>p-Pb 5.02 TeV</td>
<td>48.6 µb⁻¹ (MB trigger), mid-rapidity</td>
</tr>
<tr>
<td>Heavy-flavour decay electrons</td>
<td></td>
<td>48.6 µb⁻¹ (MB trigger), mid-rapidity</td>
</tr>
<tr>
<td>Heavy-flavour decay muons</td>
<td></td>
<td>196 µb⁻¹ (low p_T trigger, forward rapidity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.9×10^3 µb⁻¹ (high p_T trigger, forward rapidity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254 µb⁻¹ (low p_T trigger, backward rapidity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.8×10^3 µb⁻¹ (high p_T trigger, backward rapidity)</td>
</tr>
</tbody>
</table>

- Rapidity shift of the center-of-mass of 0.465 units in the p direction
- pp reference: obtained by a pQCD-based energy scaling of the p_T-differential cross sections measured at $\sqrt{s} = 7$ TeV and extrapolated to higher p_T by using pQCD calculations when no measurement is available

ALICE heavy-flavour results in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown also in **posters**:

- D mesons: A. Festanti (F-15), C. Jena (F-20) and G. Luparello (F-31)
- Heavy-flavour decay electrons: C. Jahnke (F-19), M. Kim/S. Cho (F-24), Y. Pachmayer (F-42), and J. Wagner (F-60)
- Charm baryon, Λ_c: R. Romita (M-23) and C. Zampolli (F-67)

D mesons in ALICE

- Fully reconstructed hadronic decays displaced from the interaction vertex
 \[\begin{align*}
 D^0 &\rightarrow K^-\pi^+ \quad \text{BR} = 3.88\% \\
 D^+ &\rightarrow K^-\pi^+\pi^+ \quad \text{BR} = 9.13\% \\
 D^{*+} &\rightarrow D^0\pi^+ \quad \text{BR} = 67.7\% \\
 D_s^+ &\rightarrow \phi\pi^+ \rightarrow K^-K^+\pi^+ \quad \text{BR} = 2.28\%
 \end{align*} \]

- \(|\eta|<0.9\)
 ITS: tracking, vertexing
 TPC: tracking, PID
 TOF: PID

- Signal yield from fit to the D-meson candidate invariant mass distribution
D mesons: \(p_T \)-differential cross sections in p-Pb collisions

- \(p_T \)-differential production cross sections measured for \(D^0 \), \(D^+ \), \(D^{*+} \) and \(D_s^+ \) in minimum-bias collisions over a wide \(p_T \) range
- The relative abundances of D mesons in p-Pb collisions are compatible within uncertainties with those measured in pp collisions

D mesons: p_T-differential R_{pPb}

- R_{pPb} measured for D^0, D^+, D^{*+} and D_s^+
- R_{pPb} consistent with unity within uncertainties for all D-meson species
- No significant dependence on p_T within uncertainties in the measured p_T range
Comparison with models and R_{AA}

D-meson R_{pPb} can be described by Color Glass Condensate (CGC) calculations, perturbative QCD calculations with EPS09 nuclear PDF and a model including energy loss in cold nuclear matter, nuclear shadowing and k_T-broadening.

R_{AA}: suppression by a factor of 4-5 at $p_T \sim 10$ GeV/c in the 20% most central collisions

Suppression observed in central Pb-Pb collisions is a hot medium effect

Heavy-flavour decay electrons in ALICE

- $D, B, \Lambda_c \rightarrow e + X$
- $|\eta| < 0.9$
 - ITS: tracking, vertexing
 - TPC: tracking, PID
 - TOF, EMCal, TRD: e-ID

- Two methods for subtraction of electrons from non-HF sources
 - **Cocktail**: background calculation based on measured π cross sections
 - **Invariant mass**: background reconstructed from low-mass e^+e^- pairs

- Separation of electrons from beauty-hadron decays
 - Exploit long lifetime of beauty hadrons ($c\tau \sim 500 \, \mu m$)
 - Electrons from beauty hadrons displaced from the primary vertex \rightarrow wide impact parameter, d_0, distribution
 - Impact parameter cut to select beauty decay electrons
 - Remaining background subtracted via simulations based on measured π and D-meson cross sections
Heavy-flavour decay electrons: p_T-differential cross section in p-Pb collisions

- p_T-differential cross section measured in $0.5 < p_T < 12$ GeV/c for electrons from heavy-flavour decays in minimum-bias collisions
- p_T-differential cross section measured in $1.2 < p_T < 7$ GeV/c for electrons from beauty-hadron decays in minimum-bias collisions
Heavy-flavour decay electrons: p_T-differential R_{pPb}

- R_{pPb} of electrons from heavy-flavour decays consistent with unity within uncertainties
- R_{pPb} of electrons from beauty-hadron decays consistent with unity within uncertainties
Comparison with model and R_{AA}: heavy-flavour decay electrons

- R_{pPb} data described by perturbative QCD calculations with EPS09 parameterization of shadowing within uncertainties
- R_{AA}: suppression by a factor ~ 3 in $4<p_T<10$ GeV/c in the 10% most central collisions
- Suppression observed in central Pb-Pb collisions is a hot medium effect

Comparison with R_{AA}: beauty-hadron decay electrons

- R_{pPb}: results consistent with unity
- $R_{AA} < 1$ for $p_T > 3$ GeV/c in the 20% most central collisions
- Hint for a suppression of electrons from beauty-hadron decays in central Pb-Pb collisions
Heavy-flavour decay muons at forward rapidity in ALICE

- $D, B, \Lambda_c \rightarrow \mu + X$
- Muon spectrometer
 - acceptance and geometrical cuts
 - matching between tracking and trigger chambers
 - correlation between momentum and distance of closest approach (DCA) to remove further background

- Rapidity shift of the center-of-mass of 0.465 units in the p direction
- Data-based cocktail for background (mainly from π^\pm and K^\pm decays) estimated at forward rapidity (p-going direction, $2.03 < y_{\text{cms}} < 3.53$)
Heavy-flavour decay muons at backward rapidity in ALICE

- $D, B, \Lambda_c \rightarrow \mu + X$
- Muon spectrometer
 - acceptance and geometrical cuts
 - matching between tracking and trigger chambers
 - correlation between momentum and distance of closest approach (DCA) to remove further background
- Rapidity shift of the center-of-mass of 0.465 units in the p direction
- Data-tuned Monte-Carlo cocktail for background (mainly from π^\pm and K^\pm decays) estimated at backward rapidity (Pb-going direction, $-4.46 < y_{\text{cms}} < -2.96$)
Heavy-flavour decay muons:

\[p_T \]-differential cross sections measured for heavy-flavour decay muons at forward and backward rapidities in \(2<p_T<16 \) GeV/c.

Forward rapidity:

\[p-\text{Pb} \ \text{at} \ s_{NN} = 5.02 \text{ TeV}, \ \mu^\pm \rightarrow c,b \ \text{decays} \]

\[2.5<y_{\text{cms}}<3.54 \]

Backward rapidity:

\[p-\text{Pb} \ \text{at} \ s_{NN} = 5.02 \text{ TeV}, \ \mu^\pm \rightarrow c,b \ \text{decays} \]

\[-4<y_{\text{cms}}<-2.96 \]

ALICE Preliminary

3.3% normalization uncertainty not included

3.1% normalization uncertainty not included
Heavy-flavour decay muons: p_T-differential R_{pPb}

- R_{pPb} at forward rapidity: consistent with unity within uncertainties over the whole measured p_T range.
- R_{pPb} at backward rapidity: slightly larger than unity in $2<p_T<4$ GeV/c and close to unity at higher p_T.
- Within uncertainties, data can be described by perturbative QCD calculations with EPS09 parameterization of shadowing.

Heavy-flavour decay muons: \(p_T \)-differential \(R_{FB} \)

Forward-to-backward ratio

\[
R_{FB}(2.96 < |y_{cms}| < 3.54) = \frac{d\sigma/dp_T \ [\text{Forward}(2.96 < y_{cms} < 3.54)]}{d\sigma/dp_T[\text{Backward}(-3.54 < y_{cms} < -2.96)]}
\]

- \(R_{FB} \): systematically smaller than unity in \(2<p_T<4 \) GeV/c and close to unity at higher \(p_T \)
- Within uncertainties, data can be described by perturbative QCD calculations with EPS09 parameterization of shadowing

New

Comparison with R_{AA}

- R_{AA}: suppression by a factor of 3-4 in $4<p_T<10$ GeV/c in the 10% most central collisions
- R_{pPb}: consistent with unity for $p_T>4$ GeV/c at both forward and backward rapidity
- **Suppression** observed in central Pb-Pb collisions is a **hot medium effect**
• **Cold nuclear matter effects** on heavy-flavour production assessed at mid-rapidity, forward and backward rapidity via the nuclear modification factor R_{pPb}

• R_{pPb} compatible with unity in the measured p_T range at mid-rapidity and at forward (= p-going) rapidity

• R_{pPb} at backward rapidity compatible with unity for $p_T > 4$ GeV/c, slightly larger than unity in $2 < p_T < 4$ GeV/c

• Models implementing cold nuclear matter effects describe the data within uncertainties

• **Suppression** observed in central Pb-Pb collisions at mid-rapidity and forward rapidity is due to hot medium effect
Backup
D mesons (D^0): signal in p-Pb collisions

- The Invariant Mass distributions in each rapidity interval extracted after applying topological cuts and PID are fitted to obtain the raw yields.
- The fitting function includes the Gaussian term describing the signal and Exponential term for the background.

\[\text{p-Pb, } \sqrt{s_{NN}} = 5.02 \text{ TeV} \]
\[\text{100M events} \]
\[D^0 \to K \pi^+ \text{ and charge conjugate} \]
\[2<p_T<5 \text{ GeV/c} \]
D mesons: y-differential cross sections

- Production cross section for D^0, D^+ and D^{*+}
- No significant dependence on y
D mesons (D^0): systematic uncertainty

- Yield extraction: vary fit range, background fit function, bin counting method, with and without fixed mean and sigma
- Selection Cuts: repeat analysis with different cut values
- PID strategy: repeat analysis with and without PID
- Tracking efficiency: different track selection criteria
- Branching ratio
- Simulated shape of D meson p_T distribution: compare results obtained with different p_T distribution: PYTHIA Perugia-0 vs. FONLL
Identification of electrons from heavy-flavour hadron decays

- Low p_T electrons ($p_T < 6 \text{ GeV/c}$): identified with TOF and TPC
 - TOF: symmetric 3σ cut around electron hypothesis in order to reject kaons and protons
 - TPC: select tracks in the upper half of the electron Bethe-Bloch band (-0.5~3σ) for further hadron rejection

- High p_T electrons ($p_T > 6 \text{ GeV/c}$): identified with TPC and EMCal
Identification of electrons from heavy-flavour hadron decays

- **Cocktail of background electrons**
 - Dalitz-decay of light mesons (π^0, η and η')
 - Photon conversions
 - Di-electron decays of light vector mesons (ρ, ω and ϕ)
 - Di-electron decays of heavy quarkonia, i.e. J/Ψ and Υ
 - Weak kaon decays (K_{e3})
 - Direct real and virtual photon production via hard scattering processes

- **Sys. uncertainty (background contribution excluded)**

<table>
<thead>
<tr>
<th>Error source</th>
<th>Systematic uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS clusters</td>
<td>2%</td>
</tr>
<tr>
<td>TPC clusters</td>
<td>2%</td>
</tr>
<tr>
<td>TPC PID clusters</td>
<td>2%</td>
</tr>
<tr>
<td>DCA</td>
<td>negligible</td>
</tr>
<tr>
<td>ITS-TPC matching [9]</td>
<td>2.5%</td>
</tr>
<tr>
<td>TOF matching</td>
<td>5%</td>
</tr>
<tr>
<td>TOF PID</td>
<td>2%</td>
</tr>
<tr>
<td>TPC PID ($p_T < 6$ GeV/c)</td>
<td>5%</td>
</tr>
<tr>
<td>η and charge</td>
<td>4%</td>
</tr>
<tr>
<td>MC sample</td>
<td>3%</td>
</tr>
<tr>
<td>total</td>
<td>(\approx 10%)</td>
</tr>
</tbody>
</table>
Identification of electrons from beauty-hadron decays

- **Track impact parameter cut**
 - Electron tracks from semi-leptonic beauty-hadron decays feature a broader d_0 distribution compared to that of background electrons => allows for separation
 - Minimum impact parameter cut optimised to maximise S/B is applied to reject misidentified π^\pm, e^\pm from Dalitz decays, γ conversions and charm meson decays

- **Background subtraction**
 - Background is estimated by weighting the relevant electron source yields in PYTHIA (electrons from charm hadron decays) and DPMJET (photonic electrons) to match the measured ones

- **Systematic uncertainty**
 - Electron background and minimum impact parameter cut are the dominant sources of systematic uncertainties
Heavy-flavour hadron decay muons: background subtraction

- **Forward rapidity** (p-going direction, $2.5<y_{CMS}<3.54$)
 - inputs: charged hadron spectra (π^{\pm} and K^{\pm}) measured at mid-rapidity with ALICE
 - extrapolate the measured results to forward rapidity according to the dN/dy shapes from Monte-Carlo generators
 - produce the K^{\pm}/π^{\pm} decay muon background in Monte-Carlo via fast simulation of the decay kinematics and absorber effect

- **Backward rapidity** (Pb-going direction, $-4<y_{CMS}<-2.96$)
 - scale estimated charged hadron spectra at forward rapidity to backward rapidity based on CMS measurement of forward-backward asymmetry as a function of p_T and Monte-Carlo generator predictions
Heavy-flavour hadron decay muons: systematic uncertainty on R_{pPb}

<table>
<thead>
<tr>
<th>Systematics</th>
<th>p-Pb (forward rapidity)</th>
<th>p-Pb (backward rapidity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{pA}</td>
<td></td>
<td>3.6% (for 0-100%)</td>
</tr>
<tr>
<td>Normalization to Min. Bias</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>32% maximum ($p_T<12$ GeV/c)</td>
<td>40% maximum ($p_T<12$ GeV/c)</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1% (5%) for Low (High) p_T Muon Events</td>
<td></td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Matching efficiency</td>
<td></td>
<td>0.5%</td>
</tr>
<tr>
<td>Misalignment</td>
<td></td>
<td>1% x p_T</td>
</tr>
<tr>
<td>pp reference</td>
<td>$< 15%$ (30%) maximum in $p_T<12$ GeV/c ($p_T>12$ GeV/c); $< 3%$ for rapidity extrapolation</td>
<td></td>
</tr>
<tr>
<td>Additional uncertainty on signal</td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>(no background in $p_T>12$ GeV/c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- K^{\pm}/π^{\pm} decay muon background and pp reference are the dominant sources of systematic uncertainties
Heavy-flavour hadron decay muons: R_{pPb} within sub-rapidity bins

Within uncertainties, similar results in sub-rapidity bins for R_{pA} at both forward and backward rapidity.