Measurement of hadron composition in charged jets from pp collisions with the ALICE experiment

Xianguo Lu
Physikalisches Institut, Universität Heidelberg
for the ALICE Collaboration
QM2014 Darmstadt
20-May-2014
Motivation

- Jets are phenomenological objects constructed to represent partons originating from hard scattering processes.

- Inclusive charged jet fragmentation in pp collisions measured by ALICE

 \[p_T^{\text{jet}} > 20 \text{ GeV}/c, \text{jet } p_T \text{ scaling for } z = \frac{p_T^{\text{track}}}{p_T^{\text{jet}}} > 0.1 \ (\xi = -\log z < 2.3) \]
Motivation

- Jets are phenomenological objects constructed to represent partons originating from hard scattering processes.
- Inclusive charged jet fragmentation in pp collisions measured by ALICE
 \[\text{Above } p_T^{\text{jet}} > 20 \text{ GeV}/c, \text{ jet } p_T \text{ scaling for } z = \frac{p_T^{\text{track}}}{p_T^{\text{jet}}} > 0.1 \ (\xi = -\log z < 2.3) \]
Motivation

- Jets are phenomenological objects constructed to represent partons originating from hard scattering processes.

- Inclusive charged jet fragmentation in pp collisions measured by ALICE

 \rightarrow Above p_{T}^{jet} 20 GeV/c, jet p_{T} scaling for $z=p_{T}^{\text{track}}/p_{T}^{\text{jet}}>0.1$ ($\xi = -\log z < 2.3$)
Motivation

- Identified particle spectra in pp and Pb-Pb collisions measured by ALICE
 → large p/π in intermediate p_T

- ALICE Particle IDentification capability allows to identify particle types in jets
 → first measurement of particle type dependent jet fragmentation at hadron colliders
 → unique measurement to provide constraint on fragmentation models
 → baseline technique for PID in jets from Pb-Pb collisions

ALICE PREL-67047

\[\text{ALICE} \]

$S_{NN} = 2.76 \text{ TeV}$

- 0-5\% Pb-Pb
- 60-80\% Pb-Pb
- pp

$p_T < 3 \text{ GeV}/c$
- pp, preliminary
- Pb-Pb, PRC88, 044910 (2013)
- $p_T > 3 \text{ GeV}/c$
- arXiv:1401.1250

\[
\frac{p+\bar{p}}{(\pi^+ + \pi^-)}
\]

$p_T (\text{GeV}/c)$

20-May-2014

X.-G. Lu, U. Heidelberg
The ALICE Experiment

ALICE: A Large Ion Collider Experiment

- High multiplicity environment
 - High granularity
- Very low p_T cut-off ~ 100 MeV/c
 - Very low material budget ~10%X_0
- Moderate B-field 0.5 T
- PID: large momentum range
 - dE/dx, Transition Radiation, TOF, Cherenkov ...

For π/K/p yields in charged jets from pp collision at 7 TeV:
- FastJet anti-k_T with $R=0.4$
- p_T^{jet} 5-10, 10-15, 15-20 GeV/c
- Advanced statistical PID methods (next slides):
 - TPC Coherent Fit
 - TPC Multi-Template Fit

http://www.jamin86.com/cern/
PID in jets – TPC Coherent Fit

- Most abundant particle types: π, K, p, e
- Gaussian signal shape (dE/dx truncated mean)
- Continuous signal mean and width \rightarrow models
- Continuous particle fractions
 - Allowing only statistical deviation from neighbor interpolation

Likelihood function built from signal models and fractions – **Coherence**: full-range constraint on dE/dx model

Regularization on continuity condition of particle fractions: maximal use of information

Maximum likelihood estimation

$$l = l_{\text{stat}} + l_{\text{reg}}$$

1 distribution
1 regularized likelihood function
1 optimization
Calibration of TPC signal
Particle yield extraction

Feedback

http://archiv.ub.uni-heidelberg.de/volltextserver/15651/
Particle fraction at high $p_T (>4 \text{ GeV}/c)$ very sensitive to dE/dx mean

- 5% dE/dx K-p separation
 - 1 per mil dE/dx bias
 - $0.1\%/5\% = 2\%$ fraction bias

Major systematics on PID in jets

- TPC dE/dx model uncertainty
- Change of TPC dE/dx quality
- Particle type dependence of dE/dx
 - Negligible: $-0.1\% \pm 0.3\%$
 - $Jet p_T$ dependence of dE/dx
 - Critical: 0.3% dE/dx increase per 5 GeV/c p_T^{jet} increase due to enhanced track density
 - *Automatically taken into account*
TPC Multi-template Fit
(Poster: Benjamin Andreas HESS, 20/5 14:30)

- Model TPC dE/dx response in detail (function of number of ionization clusters, track phase space, etc.) with pure particle samples selected via
 - TPC dE/dx, TOF and V0 daughters (K^0/s/ Λ decays, γ conversions)
- High \(p_T \) dE/dx determined by dE/dx model fit to clean samples
- Generate TPC dE/dx templates for a given track sample and for each particle species with parametrized yield fractions - done directly in \(z \) bins
- Minimize template-data difference

Two independent methods with different systematics give consistent results.

3 orders of mag.

![Graph showing data and fits for different particle species](ALI-PREL-70018)

![Graph showing data and fits for different particle species](ALI-PREL-68942)
The following results are shown for the first time in conferences.
Jet constituent spectra – all charged particles

disappearance of scaling at lowest jet p_T

description improves with jet and particle p_T
π/K/p yields in charged jets from pp collisions at 7 TeV

PID up to $p_T = 20$ GeV/c

- p_T dependence
 - Span 3-4 orders of mag.
 - Harder spectra at high jet p_T
 - Crossing at $p_T^{track} \approx 0.4 \pm 0.2$ GeV/c for π (K,p)
- ln(N) parabolic in ln(p_T)
 - ξ-spectra Gaussian shape

- z dependence
 - Span 1-2 orders of mag.
 - Jet p_T ordering opposite
 - Crossing at $z \approx 0.3-0.4$
 - Exponential especially for light hadron

\rightarrow disappearance of scaling at lowest jet p_T
K/π and p/π in charged jets from pp collisions at 7 TeV

No scaling with particle p_T observed

- **Scaling at $z>0.2$**
 - Kaon 5-10, 10-15, 15-20 GeV/c jet
 - Proton 10-15, 15-20 GeV/c jet

Monotonic increase to 0.5-0.6

Strangeness fraction increases with z

Maximum 0.15-0.2 at z 0.5-0.6

$z \to 1$: Leading baryons suppressed
Comparison of $\pi/K/p$ p_T spectra with PYTHIA

PYTHIA describes data to first order
Largest deviation at lowest p_T jet (5-10 GeV/c) and particle p_T

Low p_T PYTHIA undershoots pions, consistent with kaons but overshoots protons.

Better agreement at high jet p_T and particle p_T

PYTHIA reproduces the proton maximum, but fails to describe the width and high p_T slope
Comparison of K/π and p/π p_T with PYTHIA

- Kaons favor *PerugiaNoCR* (tune ID 324: no color reconnection, re-tuned to pre-LHC data)
 - strangeness fraction increases with z and leading baryon suppression at high z
 - **trends described by PYTHIA**
Summary

First measurement of identified jet fragmentation at hadron colliders

- Particle yields and ratios as functions of p_T, z of primary hadrons ($\pi/K/p$) in jets of p_T 5-20 GeV/c with advanced PID techniques
- Disappearance of scaling at lowest jet p_T
- Strangeness fraction increases with z and leading baryon suppression at high z
 - trends described by PYTHIA
- Compared to PYTHIA, challenges:
 - low jet p_T
 - pions and protons at low particle p_T

Poster: Benjamin Andreas HESS, 20/5/2014 14:30 – 18:30
Particle identification techniques for measuring the hadron composition in charged jets from pp collisions with the ALICE experiment

Talk: Xiaoming ZHANG, 20/5/2014 15:20 – 15:40
Production of strange particles in charged jets and underlying event in p–Pb collisions with ALICE
Analysis details

- $\pi/K/p$ yields in charged jets from pp collision at 7 TeV
 - 200M minimum bias events
 - FastJet anti-k_T with $R=0.4$, $|\eta^{\text{jet}}| < 0.5$, $|\eta^{\text{track}}| < 0.9$
 - p_T^{jet} 5-10, 10-15, 15-20 GeV/c, $p_T^{\text{track}} > 0.15$ GeV/c
 - Corrected to the particle level
Weighted mean

\[f_k(u) = \frac{\sum_i N_k(p_i; u)}{\sum_j N_{all}(p_j; u)}, \quad u = p_T, z, \]

\[= \frac{\sum_i N_{all}(p_i; u) f_k(p_i; u)}{\sum_j N_{all}(p_j; u)} \]

\[= \sum_i w(p_i; u) f_k(p_i; u) \]

\[\Re \sum_i w(p_i; u) f_k(p_i), \]
TPC Coherent Fit – coherence and regularization

Incoherent fit: individual fit in each momentum bin

Coherence:
- Global constraint to dE/dx model
- dE/dx model constraint fed back to fraction constraint

Regularization:
- Maximal use of information – continuity condition

http://archiv.ub.uni-heidelberg.de/volltextserver/15651/
- Model TPC dE/dx response in detail:
 momentum p, mass, pseudorapidity η, dE/dx, $N_{PID\, cluster}$, shape asymmetry

- Determine response from pure track samples selected via
 → TPC dE/dx, \textit{Time of flight (TOF)}
 → \textit{track topology ($K_0^/$, Λ decays, γ conversions)}
- Binned log-likelihood fit:
 Minimize difference between measured dE/dx distribution and template sum weighted by species fractions is
 → Fit parameters: Particle fractions as function of (p_T, track p_T / z)

- Regularisation:
 Ensure continuity of fractions versus $\ln(p_T) / z$

- Excellent description of data over 2-3 orders of magnitude

![Graph showing fit results](image-url)
PID in jets – TPC Multi-template Fit – Modelling the TPC dE/dx Response

TPC dE/dx of track depends on: momentum, mass, θ, dE/dx, #PID clusters, shape asymmetry

Extract dependencies with data driven methods:
- Clean samples from TPC, TOF and V0's
- Fit $<dE/dx>$ (θ averaged) with Bethe-Bloch model
- Extract dependence on θ (vs. $1/<dE/dx>$)
- (Rel.) resolution map in (θ, $1/<dE/dx>$)-bins as function of #PID cluster
- Parametrise asymmetric shape

Track parameters from sample of TPC tracks at given p_T to generate templates for each species
Goal: Confirm method with MC
- Take same uncertainties as in data, vary templates
- Do not use any MC information for the fit => “blind” as in data
- Use PDG instead of pure samples to extract splines and maps (“semi-blind”)

- **MC truth reproduced** within typically 10%
- **Sys. errors confirmed**: follow size of deviations between truth and fit
PID in jets – TPC Multi-template Fit – Systematic Uncertainties: Raw Fractions

- Uncertainties of dEdx response change template shapes
- Propagate uncertainties to fractions by varying shape with systematic error and assigning sigma of resulting fractions as systematic error
- Sum up all error sources in quadrature

<table>
<thead>
<tr>
<th>Template input</th>
<th>Variations</th>
</tr>
</thead>
</table>
| Mean dE/dx (Splines) | ±0.2% for \(\beta \gamma \lesssim 50 \)
| | +1.3% and −0.6% for \(\beta \gamma \gtrsim 50 \) |
| \(\sigma(dE/dx) \) | ±3% for \(dE/dx \lesssim 250 \)
| | ±50% for \(dE/dx \gtrsim 250 \) |
| \(\eta \)-dependence of mean dE/dx | ±3% for \(p \lesssim 0.45 \text{ GeV/c} \)
| | ±0.5% for \(p \gtrsim 0.45 \text{ GeV/c} \) |
| PID weighting | Default: Combined PID from ITS, TPC, TOF with default priors
| | Flat |
| Shape of detector response | Default: Asymmetric shape
| | Pure Gaussian |

- First 3 variations:
 - Global scaling with corresponding percentage
 - Uncertainties estimated from clean sample + dE/dx model comparison (high pT)
 - Note: Possible jet Pt dependence of splines as estimated by coherent fit covered by variations
Corrections

- Efficiency, acceptance and p_T^{jet}, p_T^{track} resolution
- Secondary particle contamination
- Muon contamination (species cannot be separated with given dE/dx resolution)

Table 1

<table>
<thead>
<tr>
<th>jet p_T (GeV/c)</th>
<th>5–10</th>
<th>10–15</th>
<th>15–20</th>
<th>jet p_T (GeV/c)</th>
<th>5–10</th>
<th>10–15</th>
<th>15–20</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>1.8</td>
<td>1.8</td>
<td>2.4</td>
<td>π</td>
<td>1.9</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>K</td>
<td>8.5</td>
<td>8.6</td>
<td>13</td>
<td>K</td>
<td>8.8</td>
<td>5.8</td>
<td>8.5</td>
</tr>
<tr>
<td>p</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>p</td>
<td>13</td>
<td>11</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 1: Averaged systematic errors in % of raw particle yields as functions of p_T (left) and z (right).

Table 2

<table>
<thead>
<tr>
<th>jet p_T (GeV/c)</th>
<th>5–10</th>
<th>10–15</th>
<th>15–20</th>
<th>jet p_T (GeV/c)</th>
<th>5–10</th>
<th>10–15</th>
<th>15–20</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>5.8</td>
<td>5.6</td>
<td>6.3</td>
<td>π</td>
<td>5.6</td>
<td>5.9</td>
<td>7.0</td>
</tr>
<tr>
<td>K</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>K</td>
<td>11</td>
<td>8.7</td>
<td>12</td>
</tr>
<tr>
<td>p</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>p</td>
<td>17</td>
<td>16</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 2: Averaged systematic errors in % of corrected particle yields as functions of p_T (left) and z (right).
Model comparison – z spectra direct comparison

\begin{align*}
\frac{1}{N_{\text{jets}}} \frac{dN}{dz_{\text{ch}}} & \quad \pi^+\pi^- \\
\rho_{r,\text{jet}}^{ch} & \quad 5-10 \text{ GeV/c} \\
\text{pp } \sqrt{s} = 7 \text{ TeV} & \quad \text{ALICE Preliminary} \\
\frac{1}{N_{\text{jets}}} \frac{dN}{dz_{\text{ch}}} & \quad K^+K^- \\
\rho_{r,\text{jet}}^{ch} & \quad 10-15 \text{ GeV/c} \\
\frac{1}{N_{\text{jets}}} \frac{dN}{dz_{\text{ch}}} & \quad \rho_{r,\text{jet}}^{ch} 15-20 \text{ GeV/c} \\
\text{anti-}k_T; R=0.4; |\eta^{\text{jet}}|<0.5 & \quad \rho_T^{\text{track}}>0.15 \text{ GeV/c}; |\eta^{\text{track}}|<0.9 \\
\end{align*}
Model comparison – MC/Data z spectra

Largest deviation at 5-10 GeV/c jet low z
Better agreement at high jet p_T and z

Kaons favor *PerugiaNoCR* (pre LHC tune, no color reconnection)

Models *reproduce the proton maximum and its position*,
but *fail to describe the width and high z slope*
Model comparison – K/π, p/π direct comparison

![Graphs showing particle ratio for K^+/K^- and p/p comparisons across different p_T bins.](image)

- Data and predictions from PYTHIA Perugia0, PYTHIA Perugia0NoCR, and PYTHIA Perugia2011.
- pp at $s=7$ TeV, $\rho_{\text{track}} > 0.15$ GeV/c; $|\eta_{\text{track}}| < 0.9$.
Model comparison – \(K/\pi, p/\pi \) MC/Data

Consistency pattern similar to particle yields, especially for high jet \(p_T \) due to good consistency for pions.