Energy loss and (de)coherence effects beyond the eikonal approximation

Liliana Apolinário
(Universidade de Santiago de Compostela)

Néstor Armesto, Guilherme Milhano and Carlos A. Salgado

May, 2014

Quark Matter 2014, Darmstadt, Germany
Introduction

- Main Goal of Hard Probes: probe the hot and dense medium formed in heavy-ion collisions (QGP)
 - How? Indirect measurement through the modifications observed on jets (Jet Quenching)
Introduction

- Main Goal of Hard Probes: probe the hot and dense medium formed in heavy-ion collisions (QGP)
 - How? Indirect measurement through the modifications observed on jets (Jet Quenching)

Jets in pp:

Parton branching described by pQCD:
- Vacuum splitting functions;
- Successive emissions follow angular ordering;

Universal hadronization prescription
Introduction

- Main Goal of Hard Probes: probe the hot and dense medium formed in heavy-ion collisions (QGP)
- How? Indirect measurement through the modifications observed on jets (Jet Quenching)

Jets in pp:

Parton branching described by pQCD:
- Vacuum splitting functions;
- Successive emissions follow angular ordering;
Universal hadronization prescription

Jets in PbPb:

Modifications include:
- Energy loss by medium-induced gluon radiation;
- (De)coherence effects between successive emitters;
- Hadronization pattern due to colour flow;
- Elastic energy loss;
Introduction

- Main Goal of Hard Probes: probe the hot and dense medium formed in heavy-ion collisions (QGP)
- How? Indirect measurement through the modifications observed on jets (Jet Quenching)

Jets in pp:

Parton branching described by pQCD:
- Vacuum splitting functions;
- Successive emissions follow angular ordering;
Universal hadronization prescription

Jets in PbPb:

Modifications include:
- Energy loss by medium-induced gluon radiation;
- (De)coherence effects between successive emitters;
- Hadronization pattern due to colour flow;
- Elastic energy loss;

In this talk!
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

[Ovanesyan et al 11, D'Eramo et al 11, LA et al 12]

LA, Armesto and Salgado [1204.2929]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

LA, Armesto and Salgado [1204.2929]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

\[
P_{2}(\mathbf{k}_{a}, \mathbf{k}_{b}, z; t_{L}, t_{0}) = 2g^{2}z(1-z)\int_{t_{0}}^{t_{L}} dt \int_{q, q', l} K(Q, l, z, p_{0}^{|l}; t) \\times P(k_{a} - p; t_{L}, t) P(k_{b} - (q + l - p); t_{L}, t) P(q; t, t_{0})
\]

Factorization of parton branching

LA, Armesto and Salgado [1204.2929]

[Ovanesyan et al 11, D’Eramo et al 11, LA et al 12]

[Idilbi et al 08, D’Eramo et al 10, Ovanesyan et al 11-12, Blaizot et al 13]

[Ovanesyan et al 11, D’Eramo et al 11, LA et al 12]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

(Anti)angular ordering:
- Coherent regime:
 - Subsequent emissions follow angular ordering
- Decoherent regime:
 - Subsequent emissions follow anti angular ordering

Jet Quenching

[Ovanesyan et al 11, D’Eramo et al 11, LA et al 12]

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

\[
P_2(k_a, k_b, z; t_L, t_0) = 2g^2 z(1 - z) \int_{t_0}^{t_L} dt \int_{q, Q, l} \mathcal{K}(Q, l, z, p_0^t; t) \times P(q - p; t_L, t) P(k_b - (q + l - p); t_L, t) P(q; t, t_0)
\]

Factorization of parton branching

[Blaizot, Dominguez, lancu and Mehtar-Tani [1311.5823]]

La, Armesto and Salgado [1204.2929]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

(Anti)angular ordering:
- Coherent regime:
 - Subsequent emissions follow angular ordering
- Decoherent regime:
 - Subsequent emissions follow anti angular ordering

Two different scales
\[\Delta_{med} \approx 1 - e^{-\frac{1}{2} q \theta_{q}^{2} L^{2}} \]

[Ovanesyan et al 11, D’Eramo et al 11, LA et al 12]

[Idilbi et al 08, D’Eramo et al 10, Ovanesyan et al 11-12, Blaizot et al 13]

[Idilbi et al 08, D’Eramo et al 10, Ovanesyan et al 11-12, Blaizot et al 13]

[LA, Armesto and Salgado [1204.2929]

[Mehtar-Tani et al 11-12, J. Casalderrey-Solana et al 11, Armesto et al 12]

[Mehtar-Tani, Salgado and Tywoniuk [1112.5031]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

(Anti)angular ordering:
- Coherent regime:
 - Subsequent emissions follow angular ordering
- Decoherent regime:
 - Subsequent emissions follow anti angular ordering

[Ovanesyan et al 11, D’Eramo et al 11, LA et al 12]
[Idilbi et al 08, D’Eramo et al 10, Ovanesyan et al 11-12, Blaizot et al 13]

[Mehtar-Tani et al 11-12, J. Casalderrey-Solana et al 11, Armesto et al 12]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

(Anti)angular ordering:
- Coherent regime:
 - Subsequent emissions follow angular ordering
- Decoherent regime:
 - Subsequent emissions follow anti angular ordering

[Ovanesyan et al 11, D’Eramo et al 11, LA et al 12]

[Idilbi et al 08, D’Eramo et al 10, Ovanesyan et al 11-12, Blaizot et al 13]

[Mehtar-Tani et al 11-12, J. Casalderrey-Solana et al 11, Armesto et al 12]
Jet Quenching

Energy loss calculations:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

Broadening calculations:
- Eikonal approximation:
 - Only softest particle able to acquire transverse momentum
- Beyond eikonal approximation:
 - All particles acquire transverse momentum

(Anti)angular ordering:
- Coherent regime:
 - Subsequent emissions follow angular ordering
- Decoherent regime:
 - Subsequent emissions follow anti angular ordering

References:
- Ovanesyan et al 11, D’Eramo et al 11, LA et al 12
- Idilbi et al 08, D’Eramo et al 10, Ovanesyan et al 11-12, Blaizot et al 13
- Mehtar-Tani et al 11-12, J. Casalderrey-Solana et al 11, Armesto et al 12
Kinematical Setup

- Extend previous works to account for:
 - Finite energy corrections to the energy loss;
 - Independent broadening of all propagating particles;
 - Colour correlation between different emitters.

beyond:

- Soft limit;
- Eikonal approximation;
- Small formation times (infinite medium).
Kinematical Setup

- Extend previous works to account for:
 - Finite energy corrections to the energy loss;
 - Independent broadening of all propagating particles;
 - Colour correlation between different emitters.

beyond:
- Soft limit;
- Eikonal approximation;
- Small formation times (infinite medium).

Ingredients:

- Kinematics:
 \[p_0^+ \]
 \[k_\perp = k \]
 \[k_+ = z p_0^+ \]

- Medium:
 \(q_\perp = q \)
 \(q_+ = (1 - z)p_0^+ \)

- High-energy limit: \(p_0^+ >> |k|, |q| \)

Independent medium scatterings
Static scattering centers

\(\lambda << \mu^{-1} \)
Kinematical Setup

- Extend previous works to account for:
 - Finite energy corrections to the energy loss;
 - Independent broadening of all propagating particles;
 - Colour correlation between different emitters.

Beyond:
- Soft limit;
- Eikonal approximation;
- Small formation times (infinite medium).

Ingredients:
- Kinematics:
- Medium:
- High-energy limit: \(p_0^+ >> |k|, |q| \)

For a frozen medium coloured configuration:

\[
G(x_0^+, x_0; L_+, x|p_+) = \int_{r(x_0^+)}^{r(L_+)} \mathcal{D}r(\xi) \exp \left\{ \frac{ip_+}{2} \int_{x_0^+}^{L_+} d\xi \left(\frac{dr}{d\xi} \right)^2 \right\} W(x_0^+, L_+; r(\xi))
\]

where: \(W(x_0^+, L_+; x) = \mathcal{P} \exp \left\{ ig \int_{x_0^+}^{L_+} dx_+ A_-(x_+, x) \right\} \)
Kinematical Setup

- Extend previous works to account for:
 - Finite energy corrections to the energy loss;
 - Independent broadening of all propagating particles;
 - Colour correlation between different emitters.

Beyond:
- Soft limit;
- Eikonal approximation;
- Small formation times (infinite medium).

Ingredients:
- Kinematics:
- Medium:
- High-energy limit: $p_0^+ >> |k|, |q|$

For a frozen medium coloured configuration:

$$G(x_{0+}, x_0; L_+, x | p_+) = \int_{r(x_{0+})=x_0}^{r(L_+)=x} Dr(\xi) \exp \left\{ \frac{i p_+}{2} \int_{x_{0+}}^{L_+} d\xi \left(\frac{dr}{d\xi} \right)^2 \right\} W(x_{0+}, L_+; r(\xi))$$

where: $W(x_{0+}, L_+; x) = \mathcal{P} \exp \left\{ ig \int_{x_{0+}}^{L_+} dx A_+(x, x) \right\}$
Kinematical Setup

- Extend previous works to account for:
 - Finite energy corrections to the energy loss;
 - Independent broadening of all propagating particles;
 - Colour correlation between different emitters.

beyond:
- Soft limit;
- Eikonal approximation;
- Small formation times (infinite medium).

Ingredients:

- Kinematics:
- Medium:
 - Independent medium scatterings
 - Static scattering centers

High-energy limit: \(p_0^+ >> |\mathbf{k}|, |\mathbf{q}| \)

For a frozen medium coloured configuration:

\[
G(x_{0+}, x_0; L_+, x|p_+) = \int_{\mathbf{r}(x_{0+})=x_0}^{\mathbf{r}(L_+)=x} D\mathbf{r}(\xi) \exp \left\{ \frac{i}{2} \int_{x_{0+}}^{L_+} d\xi \left(\frac{d\mathbf{r}}{d\xi} \right)^2 \right\} W(x_{0+}, L_+; \mathbf{r}(\xi))
\]

where: \(W(x_{0+}, L_+; x) = \mathcal{P} \exp \left\{ ig \int_{x_{0+}}^{L_+} dx_+ A_- (x_+, x) \right\} \)
Contributions for a finite medium:

\[S_{\text{out}} = -2\pi \delta (k_+ + q_+ - p_0^+) \frac{g}{4(k \cdot q)} T_{BA}^{a} \int_{x_0, x_1} e^{ix_0 \cdot p_0 - ix_1 \cdot (k+q)} \]
\[\times G_{AA_1} (x_{0+}, x_0; L_+, x_1 | p_0^+) \vec{u}(q) \epsilon_\kappa^a (k + q) \gamma_+ \gamma_- M_h (p_0) \]

\[S_{\text{in}} = 2\pi \delta (k_+ + q_+ - p_0^+) \frac{ig}{2} \int_{x_0, x_1, y, z} e^{ix_0 \cdot p_0 - iy \cdot q - iz \cdot k} \]
\[\times G_{BB_1} (x_{1+}, x_1; L_+, y | q_+) T_{B_1 A}^{a_1} G_{AA_1} (x_{0+}, x_0; x_{1+}, y | p_0^+) \]
\[\times G_{aa_1} (x_{1+}, x_1; L_+, z | k_+ \gamma_- M_h (p_0) \]
Contributions for a finite medium:

\[
S_{\text{out}} = -2\pi\delta(k_+ + q_+ - p_{0+}) \frac{g}{4(k \cdot q)} T_{BA}^{aq} \int_{x_0, x_1} e^{i x_0 \cdot p_0 - i x_1 \cdot (k + q)} \times G_{AA_1}(x_{0+}, x_0; L_+, x_1 | p_{0+}) \tilde{u}(q) \epsilon_k^*(k + q) \gamma_+ \gamma_- M_h(p_0)
\]

\[
S_{\text{in}} = 2\pi\delta(k_+ + q_+ - p_{0+}) \frac{ig}{2} \int_{x_0, x_1, y, z} e^{i x_0 \cdot p_0 - i y \cdot q - i z \cdot k} \times G_{BB_1}(x_{1+}, x_1; L_+, y | q_+) T_{B_1A}^{a1} G_{AA_1}(x_{0+}, x_0; x_{1+}, y | p_{0+}) \times G_{aa_1}(x_{1+}, x_1; L_+, z | k_+) \tilde{u}(q) \epsilon_k^* \gamma_- M_h(p_0)
\]

Differential cross-section:

\[
\frac{d^2 I_{\text{tot}}}{d\Omega_q d\Omega_k} = \frac{1}{\sigma_{el}} |S_{\text{tot}}|^2 = \frac{1}{\sigma_{el}} \left(|S_{\text{out}}|^2 + |S_{\text{in}}|^2 + 2 \text{Re} |S_{\text{in}} S_{\text{out}}^\dagger| \right)
\]

with:

\[
d\Omega_p = \frac{dp_+ dp_-}{2p_+ (2\pi)^3}
\]

\[
\sigma_{el} = \sqrt{2} (2\pi)^3 |M_h(p_{0+})|^2
\]
Contributions for a finite medium:

\[
S_{out} = -2\pi\delta(k_+ + q_+ - p_0+) \frac{g}{4(k \cdot q)} T_{BA}^{a} \int_{x_0, x_1} e^{i x_0 \cdot p_0 - i x_1 \cdot (k + q)} \]
\[
\times G_{AA_1} (x_{0+}, x_0; L_+, x_1 | p_{0+}) \bar{u}(q) \xi_k (k + q) \gamma_+ \gamma_- M_h (p_0)
\]

Differential cross-section:

\[
\frac{d^2 I_{tot}}{d\Omega_p d\Omega_k} = \frac{1}{\sigma_{el}} |S_{tot}|^2 = \frac{1}{\sigma_{el}} \left(|S_{out}|^2 + |S_{in}|^2 + 2 \text{Re} \ S_{in} S_{out}^{\dagger} \right)
\]

when \(\hat q_F L_+ \to \infty \)

vacuum spectrum is recovered

\[
S_{in} = 2\pi\delta(k_+ + q_+ - p_0+) \frac{ig}{2} \int_{x_0, x_1, y, z} e^{i x_0 \cdot p_0 - i y \cdot q - i z \cdot k} \]
\[
\times G_{BB_1} (x_{1+}, x_1; L_+, y | q_+) T_{B_1 A}^{a1} G_{AA_1} (x_{0+}, x_0; x_{1+}, y | p_{0+}) \]
\[
\times G_{aa_1} (x_{1+}, x_1; L_+, z | k_+) \bar{u}(q) \xi_k \gamma_- M_h (p_0)
\]

Medium Component

\[\ |...| ^2 = \text{average over spins, colour and medium profile} \]
Contributions for a finite medium:

\[
S_{\text{out}} = -2\pi \delta(k_+ + q_+ - p_{0+}) \frac{g}{4(k \cdot q)} T_{BA}^a \int_{x_0, x_1} e^{ix_0 \cdot p_0 - ix_1 \cdot (k + q)}
\]

\[
\times G_{AA_1}(x_{0+}, x_0; L_+, x_1 | p_{0+}) \tilde{u}(q) \gamma_+ \gamma_- M_h(p_0)
\]

Differential cross-section:

\[
\frac{d^2 I_{\text{tot}}}{d\Omega_\delta d\Omega_{k}} = \frac{1}{\sigma_{el}} |S_{\text{tot}}|^2 = \frac{1}{\sigma_{el}} \left(|S_{\text{out}}|^2 + |S_{\text{in}}|^2 + 2 \text{Re} |S_{\text{in}} S_{\text{out}}^\dagger| \right)
\]

when \(\hat{q}_F L_+ \to \infty \)

vacuum spectrum is recovered

Medium Component

\[
| ... |^2 = \text{average over spins, colour and medium profile}
\]

\[
S_{\text{in}} = 2\pi \delta(k_+ + q_+ - p_{0+}) \frac{ig}{2} \int_{x_0, x_1, y, z} \tilde{e}_k^i (k_+ + q) \gamma_+ \gamma_- M_h(p_0)
\]

\[
\times G_{BB_1}(x_{1+}, x_1; L_+, y | q_+) T_{B_1 A}^a G_{AA_1}(x_{0+}, x_0; x_{1+}, y | p_{0+})
\]

\[
\times G_{aa_1}(x_{1+}, x_1; L_+, z | k_+ \tilde{u}(q) \gamma_+ \gamma_- M_h(p_0)
\]

with:

\[
\sigma_{el} = \sqrt{2} (2\pi)^3 |M_h(p_{0+})|^2
\]

\[
d\Omega_p = \frac{dp_+ dp}{2p_+(2\pi)^3}
\]
Medium averages

- Schematic representation of the in-in term of the spectrum ($|S_{\text{in}}|^2$):

```
S_{\text{in}} \rightarrow g \rightarrow q \leftarrow q \leftarrow S_{\text{in}}^\dagger
```

S_{in}
Medium averages

- Schematic representation of the in-in term of the spectrum ($|S_{\text{in}}|^2$):

\[S_{\text{in}} \]

\[S_{\text{in}}^\dagger \]

\[x_0^+ \]

\[x_1^+ \]

\[x_2^+ \]

\[L^+ \]

I II III

High energy approximation:

⇒ Decomposition with a fixed number of propagators:

⇒ 3 different regions

\[t_{\text{form}} = x_2^+ x_1^+ \]
Medium averages

Schematic representation of the in-in term of the spectrum ($|S_{\text{in}}|^2$):

High energy approximation:

\Rightarrow Decomposition with a fixed number of propagators:

\Rightarrow 3 different regions

$t_{\text{form}} = x_2, x_1$

Factorisation of the colour structure and transverse momentum dynamics:

$$G_{AB}(x_+, x; y_+, y) = \int_{r(x_+)=x}^{r(y_+)=y} D\mathbf{r}(\xi) \exp \left\{ \frac{ip_+}{2} \int_{x_+}^{y_+} d\xi \left(\frac{d\mathbf{r}}{d\xi} \right)^2 \right\} W_{AB}(x_+, y_+; \mathbf{r}(\xi))$$

Kinetic part (Broadening)

Colour part
Medium averages

○ Schematic representation of the in-in term of the spectrum ($|S_{in}|^2$):

High energy approximation:

⇒ Decomposition with a fixed number of propagators:

⇒ 3 different regions

$t_{form} = x_2, x_1$

Factorisation of the colour structure and transverse momentum dynamics:

\[
G_{AB}(x_+, x; y_+, y) = \int_{r(x_+)=x}^{r(y_+)=y} \mathcal{D}r(\xi) \exp \left\{ \frac{ip_+}{2} \int_{x_+}^{y_+} d\xi \left(\frac{dr}{d\xi} \right)^2 \right\} W_{AB}(x_+, y_+; r(\xi))
\]

Kinetic part (Broadening)

Implies path integrals evaluation

Colour part

Implies computation of n-field correlators
Medium averages

- Path integral resolution:
 - Dipole approximation: $C_F n(\xi) \sigma(r) \approx \frac{1}{2} q_F^2 r^2 + O(r^2 \ln r^2)$
 - Semi-classical method:

$$G_0(x_+, x; y_+, y) = \int_{r(x_+) = x}^{r(y_+) = y} \mathcal{D}r(\xi) \exp \left\{ \frac{i p_+}{2} \int_{x_+}^{y_+} d\xi \left(\frac{dr}{d\xi} \right)^2 \right\}$$

$$= \frac{1}{(2\pi i)^{D/2}} \left| \det \left(- \frac{\partial^2 R_{cl}}{\partial y_i \partial x_i} \right) \right|^{1/2} e^{i R_{cl}(x_+, x; y_+, y)}$$

D = n\text{o of dimensions}

Classical action: $R_{cl} = \int d\xi \mathcal{L}(\xi)$

EOM: $\frac{d}{d\xi} \frac{\partial \mathcal{L}}{\partial \dot{r}} - \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow r = r_{cl}(\xi)$

Dominant contribution for the average trajectory given by the classical path

+ Fluctuations of the classical action
Medium averages

- Calculation of n-field correlators (at large N_c):

Infinitesimal expansion of the Wilson line:

$$W_{ij}(x_{0+}, L_+; x) = \left[\delta_{i\alpha} \left(1 - \frac{C_F}{2} B(\xi, L_+; 0) \right) + ig \int_{x_{0+}}^{\xi} dx_+ A_- (x_+, x) T_{i\alpha} \right] V_{\alpha j} (\xi, L_+; x)$$

where: $\delta^{ab} B(x_{i+}, x_{f+}; x - y) = g^2 \int_{x_{i+}}^{x_{f+}} dx_+ dy_+ \langle A_-^a (x_+, x) A_-^b (y_+, y) \rangle$
Medium averages

- Calculation of n-field correlators (at large N_c):

Infinitesimal expansion of the Wilson line:

\[
W_{ij}(x_{0+}, L_+; x) = \left[\delta_{i\alpha} \left(1 - \frac{C_F}{2} B(\xi, L_+; 0) \right) + ig \int_{x_{0+}}^{\xi} dx_+ A_-(x_+, x) T_{i\alpha}^{T} \right] V_{\alpha j}(\xi, L_+; x)
\]

where: \(\delta^{ab} B(x_{i+}, x_{f+}; x - y) = g^2 \int_{x_{i+}}^{x_{f+}} dx_+ dy_+ \langle A_-(x_+, x) A_-^b(y_+, y) \rangle \)
Medium averages

- Calculation of n-field correlators (at large N_c):

Infinitesimal expansion of the Wilson line:

\[
W_{ij}(x_{0+}, L_+; x) = \delta_{i\alpha} \left(1 - \frac{C_F}{2} B(\xi, L_+; 0) \right) + ig \int_{x_{0+}}^{\xi} dx_+ A_+(x_+, x) T_{i\alpha} V_{\alpha j}(\xi, L_+; x)
\]

where: $\delta^{ab} B(x_{i+}, x_{f+}; x - y) = g^2 \int_{x_{i+}}^{x_{f+}} dx_+ dy_+ \langle A_+(x_+, x) A_-(y_+, y) \rangle$
Medium averages

- Calculation of n-field correlators (at large N_c):

Infinitesimal expansion of the Wilson line:

$$W_{ij}(x_{0+}, L_+; x) = \left[\delta_{i\alpha} \left(1 - \frac{C_F}{2} B(\xi, L_+; 0) \right) + ig \int_{x_{0+}}^{\xi} dx_+ A_-(x_+, x) T_{i\alpha} \right] V_{\alpha j}(\xi, L_+; x)$$

where: $\delta^{ab} B(x_{i+}, x_{f+}; x - y) = g^2 \int_{x_{i+}}^{x_{f+}} dx_+ dy_+ \langle A_-^a(x_+, x) A_-^b(y_+, y) \rangle$
Medium averages

- Calculation of n-field correlators (at large N_c):

Infinitesimal expansion of the Wilson line:

$$W_{ij}(x_{0+}, L_+; x) = \left[\delta_{i\alpha} \left(1 - \frac{C_F}{2} B(\xi, L_+; 0) \right) \right] + i g \int_{x_{0+}}^{\xi} dx_+ A_-(x_+, x) T_{i\alpha}^{a} V_{\alpha j}(\xi, L_+; x)$$

Where: $\delta^{ab} B(x_{i+}, x_{f+}; x - y) = g^2 \int_{x_{i+}}^{x_{f+}} dx_+ dy_+ \langle A^a_-(x_+, x) A^b_-(y_+, y) \rangle$
Medium averages

- Calculation of n-field correlators (at large N_c):

Infinitesimal expansion of the Wilson line:

$$W_{ij}(x_0^+, L_+; x) = \left[\delta_{i\alpha} \left(1 - \frac{C_F}{2} B(\xi, L_+; 0) \right) + ig \int_{x_0^+}^{\xi} dx_+ A_-(x_+, x) T^a_{\alpha} \right] V_{\alpha j}(\xi, L_+; x)$$

where:

$$\delta^{ab} B(x_i^+, x_f^+; x - y) = g^2 \int_{x_i^+}^{x_f^+} dx_+ dy_+ \langle A^a_-(x_+, x) A^b_-(y_+, y) \rangle$$

Applying to a 2-field correlator:

$$\frac{1}{N} \text{Tr} \langle W(x) W^\dagger(x) \rangle = e^{-C_F v(x-y)}$$

where:

$$v(x - y) = B(0) - B(x - y) = \frac{1}{2} \int dx_+ \sigma(x - y) n(x_+)$$

Dipole cross-section:

$$\sigma(x - y) = 2g^2 \int \frac{dq}{(2\pi)^2} |a(q)|^2 \left(1 - e^{-i\cdot(q)(x-y)} \right)$$
Medium averages

Schematic representation of the in-in term of the spectrum $|\text{Sin}|^2$ at large N_c:
Medium averages

- Schematic representation of the in-in term of the spectrum ($|S_{\text{in}}|^2$) at large N_c:

\[
\langle \text{Tr} \left[W(x_g)W^\dagger(x_{g'}) \right] \text{Tr} \left[W^\dagger(x_g)W(x_g)W^\dagger(x_{g'})W(x_{g'}) \right] \rangle = \text{Tr} \langle W(x_g)W^\dagger(x_{g'}) \rangle \text{Tr} \langle W^\dagger(x_g)W(x_g)W^\dagger(x_{g'})W(x_{g'}) \rangle
\]

At large N_c: factorization into a dipole \times quadrupole

2-point function 4-point function 6-point function
Medium averages

- Schematic representation of the in-in term of the spectrum ($|\Sigma|^2$) at large N_c:

\[
\langle \text{Tr} \left[W(x_{q_g})W^\dagger(x_{\bar{g}_{q}}) \right] \text{Tr} \left[W^\dagger(x_{q_g})W(x_{\bar{g}_{q}})W^\dagger(x_{\bar{q}_g})W(x_{q_g}) \right] \rangle = \\
= \text{Tr} \langle W(x_{q_g})W^\dagger(x_{\bar{g}_{q}}) \rangle \text{Tr} \langle W^\dagger(x_{q_g})W(x_{\bar{g}_{q}})W^\dagger(x_{\bar{q}_g})W(x_{q_g}) \rangle
\]

At large N_c: factorization into a dipole x quadrupole

- q and g colour connected
- \bar{q} and \bar{g} colour connected
- g and \bar{g} colour connected
Medium averages

- Schematic representation of the in-in term of the spectrum ($|\text{Sin}|^2$) at large N_c:

\[
\langle \text{Tr} \left[W(x_g)W^\dagger(x_{\bar{g}}) \right] \text{Tr} \left[W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \right] \rangle = \text{Tr} \langle W(x_g)W^\dagger(x_{\bar{g}}) \rangle \text{Tr} \langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \rangle
\]

At large N_c: factorization into a dipole \times quadrupole

- q and g colour connected
- \bar{q} and \bar{g} colour connected
- q and \bar{q} colour connected
- g and \bar{g} colour connected

Coherent state

Decoherent state
Medium averages

- Schematic representation of the in-in term of the spectrum ($|\text{Sin}|^2$) at large N_c:

\[
\langle \text{Tr} \left[W(x_q)W^\dagger(x_{\bar{q}}) \right] \text{Tr} \left[W^\dagger(x_q)W(x_{\bar{q}})W^\dagger(x_{\bar{q}})W(x_q) \right] \rangle = \text{Tr} \langle W(x_q)W^\dagger(x_{\bar{q}}) \rangle \text{Tr} \langle W^\dagger(x_q)W(x_{\bar{q}})W^\dagger(x_{\bar{q}})W(x_q) \rangle
\]

At large N_c: factorization into a dipole \times quadrupole

(larger number of swaps suppressed by $O(N^{-2})$)

Coherent state

somewhere, in between, there should be a swap between the colour configurations

Decoherent state
Medium averages

- Result of the quadrupole:
 \[
 \text{Tr} \left\langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_{q}) \right\rangle_{(x_{2+},L_+)} = e^{Nm_{22}} + \int_{x_{2+}}^{L_+} d\tau e^{Nm_{11}(x_{2+},\tau)} m_{12}(\tau) e^{Nm_{22}(\tau,L_+)}
 \]

where:

- \(m_{11} = -\frac{1}{2} [v(x_g - x_{\bar{q}}) + v(x_q - x_{\bar{g}})] \) (coherent prop.):
- \(m_{22} = -\frac{1}{2} [v(x_{\bar{g}} - x_g) + v(x_{\bar{q}} - x_q)] \) (independent prop.):
- \(m_{12} = -\frac{1}{2} [v(x_{\bar{g}} - x_q) - v(x_q - x_g) - v(x_{\bar{q}} - x_{\bar{g}}) - v(x_g - x_{\bar{q}})] \)
Medium averages

- Result of the quadrupole:
 \[\text{Tr} \langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \rangle_{(x_{2+},L_+)} = e^{Nm_{22}} + \int_{x_{2+}}^{L_+} d\tau e^{Nm_{11}(x_{2+},\tau)} m_{12}(\tau) e^{Nm_{22}(\tau,L_+)} \]

 complete
 independent piece

where:

- \(m_{11} = -\frac{1}{2} [v(x_g - x_{\bar{g}}) + v(x_q - x_{\bar{q}})] \) (coherent prop.):
- \(m_{22} = -\frac{1}{2} [v(x_{\bar{g}} - x_g) + v(x_{\bar{q}} - x_q)] \) (independent prop.):
- \(m_{12} = -\frac{1}{2} [v(x_{\bar{g}} - x_q) - v(x_{\bar{q}} - x_g) - v(x_{\bar{g}} - x_q) - v(x_{\bar{q}} - x_g)] \)
Medium averages

- Result of the quadrupole:

 \[
 \text{Tr} \left< W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \right>_{(x_{2+},L_+)} = e^{N m_{22}} + \int_{x_{2+}}^{L_+} d\tau e^{N m_{11}(x_{2+}, \tau)} m_{12}(\tau) e^{N m_{22}(\tau, L_+)}
 \]

 complete
 independent piece
 coherent propagation up to \(\tau \)

 where:

 \[m_{11} = -\frac{1}{2} \left[v(x_g - x_{\bar{g}}) + v(x_q - x_{\bar{q}}) \right] \] (coherent prop.):

 \[m_{22} = -\frac{1}{2} \left[v(x_{\bar{g}} - x_g) + v(x_{\bar{q}} - x_q) \right] \] (independent prop.):

 \[m_{12} = -\frac{1}{2} \left[v(x_{\bar{g}} - x_q) - v(x_q - x_g) - v(x_{\bar{g}} - x_q) - v(x_q - x_g) \right] \]
Medium averages

- Result of the quadrupole:
 \[
 \text{Tr} \left\langle W^\dagger(x_g)W(x_\bar{g})W^\dagger(x_q)W(x_{\bar{q}}) \right\rangle_{(x_{2+}, L_+)} = e^{Nm_{22}} + \int_{x_{2+}}^{L_+} d\tau e^{Nm_{11}(x_{2+}, \tau)} m_{12}(\tau) e^{Nm_{22}(\tau, L_+)}
 \]

 complete independent piece coherent propagation up to \(\tau\)
 independent piece Local swap at \(\tau\)

where: \[m_{11} = -\frac{1}{2} [v(x_\bar{g} - x_q) + v(x_q - x_\bar{g})]\] (coherent prop.):

\[m_{22} = -\frac{1}{2} [v(x_\bar{g} - x_q) + v(x_q - x_\bar{g})]\] (independent prop.):

\[m_{12} = -\frac{1}{2} [v(x_\bar{g} - x_q) - v(x_q - x_\bar{g}) - v(x_\bar{g} - x_q) - v(x_q - x_\bar{g})]\]
Medium averages

- Result of the quadrupole:
 \[
 \text{Tr} \left\langle W^\dagger(x_g) W(x_\bar{g}) W^\dagger(x_\bar{q}) W(x_q) \right\rangle_{(x_{2+}, L_+)} = e^{Nm_{22}} + \int_{x_{2+}}^{L_+} d\tau e^{Nm_{11}(x_{2+}, \tau)} m_{12}(\tau) e^{Nm_{22}(\tau, L_+)}
 \]

 where:
 \[
 m_{11} = -\frac{1}{2} \left[v(x_\bar{g} - x_\bar{q}) + v(x_q - x_g) \right] \quad \text{(coherent prop.)}
 \]
 \[
 m_{22} = -\frac{1}{2} \left[v(x_\bar{g} - x_g) + v(x_q - x_\bar{q}) \right] \quad \text{(independent prop.)}
 \]
 \[
 m_{12} = -\frac{1}{2} \left[v(x_\bar{g} - x_\bar{q}) - v(x_q - x_g) - v(x_\bar{g} - x_q) - v(x_q - x_\bar{g}) \right]
 \]

 complete
 independent piece
 coherent propagation up to \(\tau \)
 Local swap
 at \(\tau \)
 independent propagation from \(\tau \)
 to \(L \)
Medium averages

- Result of the quadrupole:
 \[
 \text{Tr} \left\langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_q)W(x_q) \right\rangle_{(x_{2+}, L_+)} = e^{Nm_{22}} + \int_{x_{2+}}^{L_+} d\tau \, e^{Nm_{11}(x_{2+}, \tau)} \, m_{12}(\tau) \, e^{Nm_{22}(\tau, L_+)}
 \]
 complete piece
 independent piece
 coherent propagation up to \(\tau \)
 Local swap at \(\tau \)
 independent propagation from \(\tau \) to \(L \)

 \[
 \text{where: } m_{11} = -\frac{1}{2} \left[v(x_g - x_{\bar{g}}) + v(x_q - x_q) \right] \quad (\text{coherent prop.}): \\
 m_{22} = -\frac{1}{2} \left[v(x_g - x_g) + v(x_q - x_{\bar{q}}) \right] \quad (\text{independent prop.}): \\
 m_{12} = -\frac{1}{2} \left[v(x_g - x_{\bar{q}}) - v(x_q - x_g) - v(x_{\bar{g}} - x_q) - v(x_{\bar{q}} - x_g) \right]
 \]

 Factorising the independent propagation:
 \[
 \text{Tr} \left\langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \right\rangle_{(x_{2+}, L_+)} = e^{Nm_{22}} \left\{ 1 + \int_{x_{2+}}^{L_+} d\tau \, e^{N(m_{11} - m_{22})(x_{2+}, \tau)} \, m_{12}(\tau) \right\}
 \]
Medium averages

- Result of the quadrupole:

$$\text{Tr} \left\langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \right\rangle_{(x_{2+},L_+)} = e^{Nm_{22}} + \int_{x_{2+}}^{L_+} d\tau e^{N\left(m_{11}(x_{2+},\tau) + m_{12}(\tau) \right)} e^{Nm_{22}(\tau,L_+)}$$

where:

$$m_{11} = -\frac{1}{2} [v(x_{\bar{g}} - x_{\bar{q}}) + v(x_q - x_g)] \quad \text{(coherent prop.)}$$

$$m_{22} = -\frac{1}{2} [v(x_{\bar{g}} - x_{\bar{g}}) + v(x_q - x_{\bar{q}})] \quad \text{(independent prop.)}$$

$$m_{12} = -\frac{1}{2} [v(x_{\bar{g}} - x_{\bar{q}}) - v(x_q - x_g) - v(x_{\bar{g}} - x_q) - v(x_q - x_{\bar{g}})]$$

Factoring the independent propagation:

$$\text{Tr} \left\langle W^\dagger(x_g)W(x_{\bar{g}})W^\dagger(x_{\bar{q}})W(x_q) \right\rangle_{(x_{2+},L_+)} = e^{Nm_{22}} \left[1 + \int_{x_{2+}}^{L_+} d\tau e^{N(m_{11} - m_{22}) (x_{2+},\tau)} m_{12}(\tau) \right]$$

$$\Delta_{med} \text{ by definition}$$
Generalized Δ_{med}

- Generalized Δ_{med} accounts for the broadening of the particles:

$$\Delta_{med} = 1 + \int_{x_{2+}}^{L+} d\tau \ e^{N(m_{11}-m_{22})(x_{0+},\tau)} N_{m_{12}}(\tau)$$

$$= 1 + \int_{x_{2+}}^{L+} d\tau \ \hat{q}_F \ (x_q - x_{\bar{q}}) \cdot (x_g - x_{\bar{g}}) \ e^{-\hat{q}_F \int_{x_{2+}}^{\tau} d\xi (x_q - x_{\bar{q}}) \cdot (x_g - x_{\bar{g}})}$$

, in the dipole approximation
Generalized Δ_{med}

- Generalized Δ_{med} accounts for the broadening of the particles:

$$
\Delta_{med} = 1 + \int_{x_{2+}}^{L+} d\tau e^{N(m_{11}-m_{22})(x_{0+},\tau)} Nm_{12}(\tau)
$$

$$
= 1 + \int_{x_{2+}}^{L+} d\tau \hat{q}_F (x_q - x_{\hat{q}}) \cdot (x_g - x_{\bar{q}}) \left| \frac{\hat{q}_F}{N} \right| e^{-\hat{q}_F \int_{x_{2+}}^{L+} d\xi (x_q - x_{\hat{q}}) \cdot (x_q - x_{\bar{q}})}\ , \text{in the dipole approximation}
$$

- Able to recover previous results?
Generalized Δ_{med}

- Generalized Δ_{med} accounts for the broadening of the particles:

\[
\Delta_{med} = 1 + \int_{x_{2+}}^{L_+} d\tau \, e^{N(m_{11} - m_{22})(x_{0+}, \tau)} N m_{12}(\tau)
\]

\[
= 1 + \int_{x_{2+}}^{L_+} d\tau \, \hat{q}_F \cdot (x_q - x_{\bar{q}}) \cdot (x_g - x_{\bar{g}}) \left| e^{-\hat{q}_F \int_{x_{2+}}^\tau d\xi (x_q - x_{\bar{q}}) \cdot (x_q - x_{\bar{q}})} \right| , \text{in the dipole approximation}
\]

- Able to recover previous results?
 - Soft (hard) limit: $x_{q(g)} = x_{\bar{q}(\bar{g})} \Rightarrow \Delta_{med} = 1$
Generalized Δ_{med}

- Generalized Δ_{med} accounts for the broadening of the particles:

$$\Delta_{\text{med}} = 1 + \int_{x_2^+}^{L+} d\tau \, e^{N(m_{11}-m_{22})(x_{0+},\tau)} Nm_{12}(\tau)$$

$$= 1 + \int_{x_2^+}^{L+} d\tau \, \hat{q}_F (x_q - x_{\bar{q}}) \cdot (x_g - x_{\bar{g}})|_\tau e^{-\hat{q}_F \int_{x_2^+}^{\tau} d\xi (x_q - x_{\bar{q}}) \cdot (x_q - x_{\bar{g}})} , \text{ in the dipole approximation}$$

- Able to recover previous results?
 - Soft (hard) limit: $x_q(g) = x_{\bar{q}(\bar{g})} \Rightarrow \Delta_{\text{med}} = 1 \quad \text{OK!}$
 - Infinite medium (small t_{form}):

$$\exp \left\{ -\hat{q}_F \int_{x_2^+}^{\tau} d\xi (x_q - x_{\bar{q}}) \cdot (x_{\bar{g}} - x_g) \right\} \leq \exp \left\{ -\hat{q}_F (x_q - x_{\bar{q}}) \cdot (x_{\bar{g}} - x_g)|_{x_2^+} (\tau - x_{2+}) \right\}$$

$$\Delta \tau \sim \frac{1}{\Delta p} \sim \frac{1}{\sqrt{\hat{q}_F L_+}} \Rightarrow \Delta_{\text{med}} \approx 1 + \int_{x_2^+}^{L+} d\tau \frac{1}{L} \exp \left\{ -\frac{\tau - x_{2+}}{x_{2+}} \right\}$$
Generalized Δ_{med}

- Generalized Δ_{med} accounts for the broadening of the particles:

$$\Delta_{med} = 1 + \int_{x_{2+}}^{L_+} d\tau \, e^{N(m_{11} - m_{22})(x_{0+}, \tau)} \, Nm_{12}(\tau)$$

$$= 1 + \int_{x_{2+}}^{L_+} d\tau \, \hat{q}_F (x_q - x_{\bar{q}}) \cdot (x_g - x_{\bar{g}})|_{\tau} \, e^{-\hat{q}_F \int_{x_{2+}}^{\tau} d\xi (x_q - x_{\bar{q}}) \cdot (x_q - x_g)} , \text{ in the dipole approximation}$$

- Able to recover previous results?
 - Soft (hard) limit: $x_{q(g)} = x_{\bar{q}(g)} \Rightarrow \Delta_{med} = 1$ \textbf{Ok!}
 - Infinite medium (small t_{form}):

$$\exp \left\{ -\hat{q}_F \int_{x_{2+}}^{\tau} d\xi (x_q - x_{\bar{q}}) \cdot (x_g - x_{\bar{g}}) \right\} \leq \exp \left\{ -\hat{q}_F (x_q - x_{\bar{q}}) \cdot (x_q - x_{\bar{g}}) \bigg|_{x_{2+}} (\tau - x_{2+}) \right\}$$

$$\Delta \tau \sim \frac{1}{\Delta p} \sim \frac{1}{\sqrt{\hat{q}_F L_+}} \Rightarrow \Delta_{med} \approx 1 + \int_{x_{2+}}^{L_+} d\tau \, \frac{1}{L} \exp \left\{ -\frac{\tau - x_{2+}}{x_{2+}} \right\}$$

Suppressed by L_+

When $L_+ \to \infty \Rightarrow \Delta_{med} = 1$ \textbf{Ok!}
Two different regimes:
Two different regimes:

Random walk of initial quark

Random walk of initial quark
Two different regimes:

Random walk of initial quark

Quark and gluon are correlated (gluon formation time)
Two different regimes:

- Random walk of initial quark
- Quark and gluon are correlated (gluon formation time)
- Quark and gluon act coherently (coherent propagation controlled by dipole distance)
- Independent broadening of final partons
Two different regimes:

Random walk of initial quark

Quark and gluon are correlated (gluon formation time)

Quark and gluon act coherently (coherent propagation controlled by dipole distance)

Medium-induced gluon radiation is suppressed

Random walk of initial quark

Quark and gluon are correlated (gluon formation time)

Independent broadening of final partons

Loss of energy is more efficient
Conclusions

- Able to unify in a single expression:

Broadening:
- Eikonal approximation:
- Beyond eikonal approximation:

Energy loss:
- Soft gluon radiation limit;
- Extensions to account for hard limit;

\[
\int \mathcal{D}x_q(\xi) \mathcal{D}x_{\bar{q}}(\xi) \mathcal{D}x_g(\xi) \mathcal{D}x_{\bar{g}}(\xi) \exp \left\{ \frac{ip_0+}{2} \int_{x_2^+}^{L_+} d\xi \left[(1-z) (\dot{x}_q^2 - \dot{x}_{\bar{q}}^2) + z (\dot{x}_g^2 - \dot{x}_{\bar{g}}^2) \right] \right\}
\times e^{-\frac{N}{2} v(x_g-x_{\bar{g}})} \left\{ e^{Nm_{22}} + \int_{x_2^+}^{L_+} d\tau e^{Nm_{11}(x_{0+},\tau)} Nm_{12} e^{Nm_{22}(\tau,L_+)} \right\}
\]

(Anti)angular ordering:
- Coherent regime:
- Decoherent regime: