

Lattice QCD based equation of state at finite baryon density

Pasi Huovinen

J. W. Goethe Universität & Frankfurt Institute for Advanced Studies

Quark Matter 2014

May 20, 2014, Darmstadt, Germany

in collaboration with Peter Petreczky and Christian Schmidt

funded by BMBF under contract no. 06FY9092

Nuclear phase diagram

Taylor expansion for pressure

$$\frac{P}{T^4} = \sum_{i,j} c_{ij}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_S}{T}\right)^j,$$

where

$$c_{ij}(T) = \frac{1}{i!j!} \frac{\partial^i}{\partial (\mu_B/T)^i} \frac{\partial^j}{\partial (\mu_S/T)^j} \frac{P}{T^4},$$

i.e. moments of baryon number and strangeness fluctuations and correlations

In EoS based on lattice calculations of these?

Continuum extrapolated second order coefficients (also c_{11}):

HISQ: hotQCD collaboration, Phys. Rev. D 86, 034509 (2012) stout: Budapest-Wuppertal collaboration, JHEP 1201, 138 (2012)

• Are first coefficients enough?

Pressure in HRG at T = 150 MeV

full hadron resonance gas, or evaluate Taylor coefficients in HRG:

- Fourth and sixth order coefficients needed
- Evaluated using p4 action with $N_{\tau} = 4$
- ⇒ large discretization effects?

Hadrons on lattice

- 16 pseudoscalar mesons on lattice
- Hadron masses depend on lattice cutoff
- \Rightarrow i.e. on temperature:
 - E.g. for pseudoscalar mesons on asqtad calculations

$$m_{ps_{i}}^{2} = m_{ps_{0}}^{2} + \frac{1}{r_{1}^{2}} \frac{a_{ps}^{i} x + b_{ps}^{i} x^{2}}{(1 + c_{ps}^{i} x)^{\beta_{i}}}$$
$$x = (a/r_{1})^{2}$$
$$a = \frac{1}{N_{\tau}T}$$

30 MeV shift

Parametrization

$$c_{ij}(T) = \frac{a_{ij1}}{\hat{T}^{n_{ij1}}} + \frac{a_{ij2}}{\hat{T}^{n_{ij2}}} + \frac{a_{ij3}}{\hat{T}^{n_{ij3}}} + \frac{a_{ij4}}{\hat{T}^{n_{ij4}}} + \frac{a_{ij5}}{\hat{T}^{n_{ij5}}} + \frac{a_{ij6}}{\hat{T}^{n_{ij6}}} + c_{ij}^{SB},$$

where n_{kij} are integers with $1 < n_{kij} < 23$, and

$$\hat{T} = \frac{T - T_s}{R},$$

with $T_s = 0.1$ or 0 GeV, and R = 0.05 or 0.15 GeV.

Constraints:

$$c_{ij}(T_{\rm sw}) = c_{ij}^{\rm HRG}(T_{\rm sw})$$
$$\frac{d}{dT}c_{ij}(T_{\rm sw}) = \frac{d}{dT}c_{ij}^{\rm HRG}(T_{\rm sw})$$
$$\frac{d^2}{dT^2}c_{ij}(T_{\rm sw}) = \frac{d^2}{dT^2}c_{ij}^{\rm HRG}(T_{\rm sw})$$
$$\frac{d^3}{dT^3}c_{ij}(T_{\rm sw}) = \frac{d^3}{dT^3}c_{ij}^{\rm HRG}(T_{\rm sw})$$

at $T_{\rm sw} = 160$ MeV for second order coefficients $T_{\rm sw} = 155$ MeV for fourth and sixth order coefficients

3rd derivative to quarantee smooth behaviour of speed of sound:

$$c_s^2 \propto rac{\mathrm{d}^2}{\mathrm{d}T^2} c_{ij}$$

c_{20} and c_{02}

c_{11}

Speed of sound along $s/n_b = \text{const.}$ curve

• $n_b = 0$ parametrized Budapest-Wuppertal trace anomaly, arXiv:1309.5258

Speed of sound along $s/n_b = \text{const.}$ curve

 $s/n_b = 400 \leftrightarrow \sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$

Speed of sound along $s/n_b = \text{const.}$ curve

 $s/n_b = 400 \leftrightarrow \sqrt{s_{\rm NN}} \sim 200 \,{\rm GeV}$

 $s/n_b = 100 \leftrightarrow \sqrt{s_{\rm NN}} \sim 64 \,{\rm GeV}$

Speed of sound along $s/n_b = \text{const.}$ curve

Speed of sound along $s/n_b = \text{const.}$ curve

Speed of sound along $s/n_b = 40$ curve

- each correction smaller than previous
- \Rightarrow expansion under control
- 4th order essential at low temperatures!

p_T -spectra at SPS

• harder EoS, more transverse flow, flatter spectra

p_T -spectra at SPS

• $T_{\rm fo} \approx 120 \text{ MeV (bag)} \Rightarrow 130 \text{ MeV (lattice)}$

 v_2 at SPS (b = 7 fm)

• $T_{\rm fo} \approx 120 \text{ MeV (bag)} \Rightarrow 130 \text{ MeV (lattice)}$

Conclusions

- EoS at finite baryon densities based on lattice QCD calculations of baryon number and strangeness fluctuations and correlations
 - extension to baryon densities at SPS energies requires 4th and 6th order coefficients
- lattice spacing dependence of hadron masses explains the difference between HRG and lattice QCD
 - **30 MeV shift** in temperature
- effect on flow when compared to bag model EoS tiny at SPS and (some?) RHIC low energy scan energies

Backups

c_{11}

c_{02}

 c_{40}

 c_{22}

 c_{13}

 c_{04}

 v_2 at SPS (b = 7 fm)

• $T_{\rm fo} \approx 120$ MeV (both)