Centrality dependence of particle production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE experiment at LHC

Alberica Toia (Frankfurt University) on behalf of the ALICE Collaboration

QM2014
Darmstadt, Germany
18-24 May, 2014
Outline & Motivations

ALICE measured min bias R_{pA}^\rightarrow Consistent with 1 for $p_T > 2\text{GeV/c}$

Average p-Pb overlap function $<T_{pA}>$ from total (geometric) p-A cross-section:

$$\langle N_{coll} \rangle = 208 \cdot \sigma_{pN}/\sigma_{pA}$$
$$\sigma_{pN} = 70\text{mb}$$
$$\sigma_{pA} = 2100\text{mb}$$

Measurements at low and intermediate p_T, coherent and collective effects with a strong geometric collisions geometry dependence

p-A nuclear modifications: incoherent superposition of p-N collisions?

1) how many collisions (N_{coll})?

2) what is the bias?
Glauber + Slow Nucleon Model

- Glauber fits: good description of data
- SNM: heuristic model → remarkably good agreement!
- $\langle N_{coll}^{\text{Glauber}} \rangle$ similar for different estimators
- Sys. Err: varying Glauber par.
- MC closure test with HIJING

ALICE p-Pb $|s_{NN}| = 5.02$ TeV

- Data
- NBD-Glauber fit

$N_{coll}^{\text{Glauber}}$ similar for different estimators

Glauber + Negative Binomial Distribution
Origin of the Bias in pA

Looser correlation between \(N_{\text{part}} \) and impact parameter (b)

\[\rightarrow \text{Fluctuations at the origin of physical bias} \]
Biases in pA

- **Multiplicity bias**: fluctuations sizable
 → Bias on $\text{Mult}/N_{\text{part}}$ at central and peripheral collisions

- MC models with multi-parton interaction (MPI) include fluctuations of particle sources (hard scatterings)
 HIJING (X.N. Wang, M. Gyulassy, nucl-th/9502021)

 → bias in mult ~ bias in hard scattering
Biases in pA

- **Multiplicity bias**: fluctuations sizable
 - Bias on $\text{Mult}/N_{\text{part}}$ at central and peripheral collisions
- MC models with multi-parton interaction (MPI) include fluctuations of particle sources (hard scatterings)
 - HIJING (X.N. Wang, M. Gyulassy, nucl-th/9502021)
 - \rightarrow bias in mult \sim bias in hard scattering

- Triggered di-hadron angular ($\Delta\phi$) correlations are an ideal tool to study mini-jets.
 - Separates overlapping particle sources on a statistical basis
 - Sensitivity to fragmentation properties and number of particle sources
 - Important deviations for low and high N_{coll}
 - \rightarrow less / more semi-hard scatterings per p-N collision

Alberica Toia
Biases in pA

- **Multiplicity bias**: fluctuations sizable
 → Bias on $\text{Mult}/N_{\text{part}}$ at central and peripheral collisions

- MC models with multi-parton interaction (MPI) include fluctuations of particle sources (hard scatterings)
 HIJING (X.N. Wang, M. Gyulassy, nucl-th/9502021)
 → bias in mult ~ bias in hard scattering

- **Jet-veto**: multiplicity range in peripheral events represent an effective veto on hard processes

- **Geometry bias**:
 Mean nucleon-nucleon impact parameter (b_{NN}) increases in peripheral collisions
Scaling of particle production

\[\frac{\langle S \rangle_i}{\langle S \rangle_{MB}} \text{ vs } \frac{dN/d\eta}{dN/d\eta}_{MB} \] (-1<\eta_{lab}<0)

- PHOBOS d-Au: \(\eta \rightarrow 1.6^{*}\eta \) (beam rapidity)
- Similar dependence except A-going dir.

Fit: assuming \(dN/d\eta \) scales with \(N_{part} \)

\[
\frac{\langle S \rangle_i}{\langle S \rangle_{MB}} = \frac{\left(\frac{N_{part}}{MB}\right)}{\left(\frac{N_{part}}{MB} - \alpha\right)} \cdot \left(\frac{\langle dN/d\eta \rangle_i}{\langle dN/d\eta \rangle_{MB}}\right)^{-1<\eta<0} - \frac{\alpha}{\left(\frac{N_{part}}{MB} - \alpha\right)}
\]

- \(\alpha = 0 \) – perfect \(N_{part} \) scaling
- \(\alpha = 1 \) – perfect \(N_{coll} \) (or \(N_{part} \) target) scaling
- \(\alpha \) has clear meaning (\(N_{part} \) vs \(N_{coll} \) scaling)

Correlation between causally disconnected observables (eg: slow neutrons - multiplicity) → connection to geometry.
Hybrid Method

1) assumption: ZN insensitive to dynamical biases → slice events in ZN

2) assumption:
 a) Mid-rap $dN/d\eta$ scales with N_{part}
 b) Pb-side $dN/d\eta$ scales with N_{part} (target)
 ($= N_{coll}$ in pA)
 c) Yield at high-p_T scales with N_{coll}

\[
\langle N_{part}\rangle_i^{\text{mult}} = \langle N_{part}\rangle_{MB} \cdot \frac{\langle S \rangle_i}{\langle S \rangle_{MB}}
\]
\[
\langle N_{coll}\rangle_i^{\text{mult}} = \langle N_{part}\rangle_i^{\text{mult}} - 1
\]
\[
\langle N_{coll}\rangle_i^{\text{Pb-side}} = \langle N_{coll}\rangle_{MB} \cdot \frac{\langle S \rangle_i}{\langle S \rangle_{MB}}
\]
\[
\langle N_{coll}\rangle_i^{\text{high}-p_T} = \langle N_{coll}\rangle_{MB} \cdot \frac{\langle S \rangle_i}{\langle S \rangle_{MB}}
\]

- All values within at most 10% → consistency of assumptions
- This does not yet prove the validity of any (or all) of these assumptions 2a), b), c)
\[Q_{pA} \left(p_T; \text{cent} \right) = \frac{\frac{d N^{pA}}{d p_T}}{\frac{d N^{pp}}{d p_T}} = \frac{d N^{pA}}{d p_T} \frac{T_{pA}^{Glauber}}{T_{pA}^{Glauber}} \frac{d \sigma^{pp}}{d p_T} \neq 1 \]

- \(Q_{pPb} \) widely spread between centrality classes
- Negative slope in 80-100%
 (jet contribution increases with \(p_T \))
 → “jet veto bias”
- Good agreement with G-PYTHIA
 (Pythia + p-Pb Glauber MC)
 - In 80-100%
 - High-\(p_T \)
 → incoherent superposition of pN
- Deviations at low-\(p_T \)
 (soft particles: no scale with \(N_{\text{coll}} \))
- Deviations at intermediate \(p_T \)
 → nuclear effects?
$Q_{pA}(p_T; \text{cent}) = \frac{d N_{pA}/d p_T}{N_{\text{coll}}^{\text{Glauber}}} = \frac{d N_{pA}/d p_T}{T_{pA}^{\text{Glauber}}} \neq 1$

- Q_{pPb} spread between centrality
- Reduces with increasing rapidity gap: CL1→V0M→V0A
- Negative slope in 80-100% → “jet veto bias”
- Reduces in V0M and absent in V0A
- Good agreement with G-PYTHIA (Pythia + p-Pb Glauber MC)
- Worse in V0M and V0A
- Deviations at intermediate p_T
- ZNA: spectra more similar high-p_T values → bias in N_{coll}

NEW!

CL1: SPD cluster $|\eta|<1.4$

V0M: V0A+C Mult.
(-3.7<|η|<−1.7, 2.8<|η|<5.1)

V0A: V0A Mult (2.8<|η|<5.1)

ZNA: 0° Neutron Energy
QpA

\[Q_{pA}(p_T; \text{cent}) = \frac{\frac{d N^{pA}}{d p_T}}{N^{\text{Glauber}}_{\text{coll}}} = \frac{\frac{d N^{pA}}{d p_T}}{T^{\text{Glauber}}_{pA}} \neq 1 \]

NEW!

Hybrid: nearly perfect scaling with \(N_{\text{coll}} \) at high-\(p_T \)

NEW!
NEW!

Multiplicity density

CL1

V0M

VOA

ZNA

ALICE p-Pb $|s_{NN}|=5.02$ TeV

PRELIMINARY
Multiplicity vs Centrality

Asymmetry Evolution with N_{ch}

Increasing excess of particles in the direction of the Pb beam with respect to the proton-going direction.

Similar trend in common N_{ch}-range.

$N_{\text{ch}}/N_{\text{part}}$ vs N_{part}

- CL1, V0M and V0A: increases more than linearly (multiplicity bias)
- Not for Glauber-Gribov model
- ZNA: saturation above $N_{\text{part}} \approx 13$

Hybrid: nearly perfect scaling with N_{part}
Summary

- **Multiplicity Estimators**: bias on the hardness of the pN collisions (quantified by the number of hard scatterings per pN collision).
 - For Q_{pA}: include full dynamical bias (incoherent superposition of pN collisions) → Glauber + pp

- **ZDC Estimator**: expected to be insensitive to bias
 Establish a geometry-related particle scaling with a better than 10% precision entirely data-driven approach!
Assumptions on particle scaling:
 - Mid-Mult $\sim N_{\text{part}}$, Forward-Mult $\sim N_{\text{part}}^{\text{target}}$, High-$p_T$ $\sim N_{\text{coll}}$
 → one implies the other two!
 → Unbiased centrality determination in pA collisions!

- Centrality dependence of particle production measured:
 → N_{ch} scales with N_{part}
 → Q_{pA} consistent with 1 at high-p_T

- **Strong constrains on the models describing particle production in HI collisions**
Extra
<table>
<thead>
<tr>
<th>Event Activity</th>
<th>N_{coll}</th>
<th>Method</th>
<th>$Q_{p\text{Pb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL1</td>
<td>$N_{\text{CL1 coll}}^\text{CL1}$</td>
<td>Glauber+NBD fit</td>
<td>$Q_{p\text{Pb}}^{\text{CL1}}$</td>
</tr>
<tr>
<td>V0M</td>
<td>$N_{\text{Glauber coll}}^{\text{V0M}}$</td>
<td>Glauber+NBD fit</td>
<td>$Q_{p\text{Pb}}^{\text{Glauber}}$</td>
</tr>
<tr>
<td>V0A</td>
<td>$N_{\text{coll}}^{\text{V0A}}$</td>
<td>Glauber+SNM fit</td>
<td>$Q_{p\text{Pb}}^{\text{V0A}}$</td>
</tr>
<tr>
<td>ZNA</td>
<td>$N_{\text{coll}}^{\text{ZNA}}$</td>
<td>Glauber+SNM fit</td>
<td>$Q_{p\text{Pb}}^{\text{ZNA}}$</td>
</tr>
<tr>
<td></td>
<td>$N_{\text{coll}}^{\text{mult}}$</td>
<td>assuming $(dN/d\eta){-1<\eta<0} \propto N{\text{part}}$</td>
<td>$Q_{p\text{Pb}}^{\text{mult}}$</td>
</tr>
<tr>
<td></td>
<td>$N_{\text{coll}}^{\text{Pb-side}}$</td>
<td>assuming V0A ring $1 \propto N_{\text{target part}}$</td>
<td>$Q_{p\text{Pb}}^{\text{Pb-side}}$</td>
</tr>
<tr>
<td></td>
<td>$N_{\text{coll}}^{\text{high-pt}}$</td>
<td>assuming $(dN/dp_T){p_T>10\text{GeV/c}} \propto N{\text{coll}}$</td>
<td>$Q_{p\text{Pb}}^{\text{high-pt}}$</td>
</tr>
</tbody>
</table>
- **Nuclear density profile: Woods–Saxon (2pF)**
 - Radius = 6.62 ± 0.06 fm
 - Skin depth = 0.546 ± 0.01 fm
 - Intra-nucleon distance = 0.4 ± 0.4 fm
- **Cross-section** $\sigma_{NN} = 70 \pm 5$ mb
- **Proton radius** $R_p = 0.6 \pm 0.2$ fm
Slow Nucleon Model

PROTONS

⇒ E910 (p-Au @ 18 GeV/c) fit to N_{gray} vs. N_{coll} to determine the average number of gray protons

\[\langle N_{\text{gray}} \rangle = (c_0 + c_1 N_{\text{coll}} + c_2 N_{\text{coll}}^2) \left(\frac{A_{\text{Pb}}}{A_{\text{Au}}} \right)^{2/3} \]

⇒ COSY (p-Au @ 2.5 GeV) measured the fraction of black over gray protons for the average number of black protons

\[\langle N_{\text{black}} \rangle = f_{\text{blackovergray}} \times \langle N_{\text{gray}} \rangle \]

\[f_{\text{blackovergray}} = 0.65 \]

⇒ N_{gray}, N_{black} extracted from binomial distributions

NEUTRONS

⇒ from COSY: Light Charged Particle ($Z\leq 7$)

\[\text{LCP} = \left(\langle N_{\text{gray}} \rangle + \langle N_{\text{black}} \rangle \right)/\alpha \]

\[\alpha = 0.585 \quad (\text{COSY is left free}) \]

\[\langle N_{\text{slow}} \rangle = \langle N_{\text{black}} \rangle + \langle N_{\text{gray}} \rangle = a + b/(c-\text{LCP}) \quad a, b, c \text{ can be finely tuned} \]

⇒ results from p induced spallation reactions (0.1-10 GeV) for the fraction of black/gray neutrons

\[\langle N_{\text{black}} \rangle = 0.9 \times \langle N_{\text{slow}} \rangle \]

⇒ N_{gray}, N_{black} extracted from binomial distributions
Slow Nucleon Model

- Features of $N_{ch} \sim$ independent of $E_{\text{projectile}}$ (1GeV \rightarrow 1 TeV)

- **Slow nucleons** emission dictated by collision geometry \rightarrow Maxwell-Boltzmann (independent statistical emission) classified from emulsion experiments
 - Gray: soft nucleons knocked out by wounded nucleons
 - Black: low energy target fragments from de-excitation, evaporation

- Glauber model \rightarrow distribution of N_{coll}

- implemented model used a parameterization of results from low energy experiments
 C. Oppedisano https://edms.cern.ch/document/682801/1
 F. Sikler, hep-ph/0304065
Insights from Monte Carlo

N_{coll} scaling: $n_{\text{hard}}/N_{\text{coll}} = \text{const.}$

Number of hard scatterings per p-N collision
- vs N_{coll} (no multiplicity bias here!)
- Deviation from N_{coll} scaling
 - at low N_{coll}: geometry b_{NN}
 - at high N_{coll}: energy conservation (break down of factorization)

p-Pb collisions described as incoherent superposition of nucleon-nucleon
- vs centrality from multiplicity $|\eta| < 1.4$
- only multiplicity bias
- strong deviation from N_{coll}-scaling at low and high centralities.
ZNA correlations

![ZNA correlations graph](image)
Detectors used for Centrality

Particle production modeled by Negative Binomial Distribution (NBD)

Nucleus fragmentation model:
Black nucleons: evaporation
Grey nucleons: knock-out
(eg C.Oppedisano https://edms.cern.ch/document/682801/1
F. Sikler arXiv: 0304.065)

Slow Nucleons
Detectors used for Centrality

MID-RAPIDITY

- TPC+ITS Tracks $|\eta| < 0.9$
- 2 layers Si Pixel $|\eta| < 2$; $|\eta| < 1.4$

ZERO-DEGREE

- Quartz-Fiber “Spaghetti” Zero Degree Calorimeters
- $z = \pm 112.5$ m

VZERO Scintillators

$z = 340$ cm $2.8 < \eta < 5.1$

$z = -90$ cm $-3.7 < \eta < -1.7$

Particle production modeled by Negative Binomial Distribution

Pb-fragmentation more relevant at forward rapidity

Centrality Estimators:

- **CL1**: Clusters in 2nd Pixel Layer
- **V0M**: VZERO-A+C Multiplicity
- **V0A**: VZERO-A Multiplicity
- **ZNA**: ZDC-A Neutron Energy

ZDC sensitive to slow nucleons

Nucleus fragmentation model:
- Black nucleons: evaporation
- Grey nucleons: knock-out
Glauber Fit

Glauber + Negative Binomial Distribution

- Centrality classes: Multiplicity distribution sliced into percentiles of cross-section
- Obtain $P(N_{\text{coll}})$ from Glauber MC
- For each N_{coll} obtain
 - Multiplicity from NBD
 - Slow nucleons from SNM
- Obtain $\langle N_{\text{coll}} \rangle$ for each centrality class

Glauber MC Parameters

$$\rho(r) = \rho_0 \frac{1}{1 + \exp \left(\frac{r - R}{a} \right)}$$

- $R = 6.62 \pm 0.06$ fm
- $a = 0.546 \pm 0.01$ fm
- Minimum NN distance: 0.4 ± 0.4 fm
- pN Cross-section: $\sigma_{pN} = 70 \pm 5$ mb
- Proton radius: $R_p = 0.6 \pm 0.2$ fm
Ncoll from Glauber Fits

- \(<N_{\text{coll}}^{\text{Glauber}} > \) similar for different estimators
- Except for peripheral events, also similar to b-slicing
- Systematic error estimated by varying Glauber MC parameters.
- MC closure test performed with HIJING
Multiplicity Bias in pA

- **Multiplicity bias**: fluctuations sizable → Bias on Mult/\(N_{\text{part}}\) at central and peripheral collisions

- MC models with multi-parton interaction (MPI) include fluctuations of particle sources (hard scatterings)
 HIJING (X.N. Wang, M. Gyulassy, nucl-th/9502021)

→ bias in mult ~ bias in hard scattering

QM2014, 19/05/2014 Alberica Toia
Bias in pA -- peripheral

- **Jet-veto**: multiplicity range in peripheral events represent an effective veto on hard processes

- **Geometry bias**
 Mean nucleon-nucleon impact parameter \(b_{NN} \) increases in peripheral collisions

- Due to MPI, mult. fluctuations depend on fluctuations in particle sources (hard scatterings)
 - Mean number of scatterings per event obtained from impact parameter \(b_{NN} \)-dependent proton-nucleon overlap function \(T_N(b_{NN}) \)

\[
\rightarrow \text{bias in mult} \sim \text{bias in hard scattering emphasized at peripheral}
\]
Scaling of particle production

- Scaling studied by defining so called self-normalized signals $\langle S \rangle_i / \langle S \rangle_{MB}$ vs self-normalized mid-rapidity $dN/d\eta(-1<\eta_{lab}<0)$

 - Fit: assuming mid-rapidity $dN/d\eta$ scales with N_{part}

 $\alpha = 0$ – perfect N_{part} scaling
 $\alpha = 1$ – perfect Ncoll (or N_{target_part}) scaling
 α has clear meaning (N_{part} vs Ncoll scaling)

\[\frac{\langle S \rangle_i}{\langle S \rangle_{MB}} = \frac{\langle N_{part} \rangle_{MB} - \alpha}{\langle N_{part} \rangle_{MB}} \cdot \left(\frac{\langle dN/d\eta \rangle_i}{\langle dN/d\eta \rangle_{MB}} \right)_{-1<\eta<0} - \frac{\alpha}{\langle N_{part} \rangle_{MB} - \alpha} \]

\[\frac{\langle S \rangle_i}{\langle S \rangle_{MB}} = \frac{\langle N_{part} \rangle_{MB}^\beta}{\langle N_{part} \rangle_{MB}} \cdot \left(\frac{\langle dN/d\eta \rangle_i}{\langle dN/d\eta \rangle_{MB}} \right)^\beta_{-1<\eta<0} \]

\[\beta = 0 \] – perfect N_{part} scaling
Scaling vs η_{CMS}

- PHOBOS d-Au dN/deta(eta) data, $\eta \rightarrow 1.6 \times \eta$ (beam rapidity RHIC \rightarrow LHC)
- Similar dependence between our and PHOBOS data, except forward nucleus-going direction
- High-pT and inner VZERO-A ring quite similar, delta(alpha)\sim0.2
- Mid-rapidity vs inner VZERO-A is not perfect Npart vs Ncoll scaling, delta(alpha)\sim1.2

QM2014, 19/05/2014
Alberica Toia
Hybrid Method

1) assumption: ZN insensitive to dynamical biases \rightarrow slice events in ZNA

2) assumption:
 a) Mid-rap (-1<η_{lab}<0) $dN/d\eta$ scales with N_{part}
 b) Forward multiplicity in Pb-going direction scales with $N_{\text{part target}}$ (= N_{coll} in pA)
 innermost ring of VZERO-A as a proxy
 c) Mid-rap $dN/d\eta$ at high-p_T (10<p_T<20 GeV/c) scales with N_{coll} all values within at most 10%
 \rightarrow assumptions consistent within some good approximation
 Of course, this does not prove the validity of any (or all) of these assumptions

\[
\langle N_{\text{coll}} \rangle_i = \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle dN/d\eta \rangle_i}{\langle dN/d\eta \rangle_{MB}}^{-1 < \eta < 0}
\]
\[
\langle N_{\text{coll}} \rangle_i = \langle N_{\text{part}} \rangle_i - 1
\]
Mean Q_{pPb} at $p_T > 10$ GeV

- p-Pb collisions described as incoherent superposition of nucleon-nucleon
 - vs centrality from multiplicity $|\eta| < 1.4$
 - only multiplicity bias
 - strong deviation from N_{coll}-scaling at low and high centralities.

- from multiplicity bias (Glauber + NBD fit)
- from Toy-MC (Glauber + Pythia)
Shape flattens with increasing rapidity gap
CL1→V0M→V0A
Q_{pA} flat for hybrids
Bias from different estimators

• Different centrality estimators → different deviations from Ncoll scaling

 • **CL1 (Clusters Pixel Layer 2):** strong bias due to full overlap with tracking region.

 – Additional bias in peripheral event from “Jet veto effect”

 – Jets contribute to the multiplicity and shift events to higher centralities (p_T - dependent)

 • **V0M (V0A+V0C Multiplicity):** reduced bias since outside tracking region

 • **V0A Multiplicity:** reduced bias because of important contribution from Pb fragmentation region.

 • **ZNA:** small bias slow nucleon production independent of hard processes

\[
Q_{pA}(p_T; \text{cent}) = \frac{d N^{pA}/d p_T}{N^{Glauber}_{\text{coll}}} = \frac{d N^{pA}/d p_T}{T^{Glauber}_{pA} d \sigma^{pp}/d p_T} \neq 1
\]

At high p_T

In general N_{coll} for a given centrality class can not be used to scale the pp cross-section!
Glauber-Gribov

<table>
<thead>
<tr>
<th>Centrality (%)</th>
<th>(N_{\text{part}} \times \text{NBD})</th>
<th>(N_{\text{coll}} \times \text{NBD})</th>
<th>(N_{\text{part}} \times \text{NBD})</th>
<th>(N_{\text{coll}} \times \text{NBD})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>14.8</td>
<td>14.9</td>
<td>17.8</td>
<td>19.2</td>
</tr>
<tr>
<td>5 - 10</td>
<td>13.0</td>
<td>13.2</td>
<td>14.4</td>
<td>15.2</td>
</tr>
<tr>
<td>10 - 20</td>
<td>11.7</td>
<td>11.8</td>
<td>12.0</td>
<td>12.5</td>
</tr>
<tr>
<td>20 - 40</td>
<td>9.36</td>
<td>9.49</td>
<td>8.82</td>
<td>9.04</td>
</tr>
<tr>
<td>40 - 60</td>
<td>6.42</td>
<td>6.49</td>
<td>5.68</td>
<td>5.56</td>
</tr>
<tr>
<td>60 - 80</td>
<td>3.81</td>
<td>3.59</td>
<td>3.33</td>
<td>2.89</td>
</tr>
<tr>
<td>80 - 100</td>
<td>1.94</td>
<td>1.85</td>
<td>1.80</td>
<td>1.43</td>
</tr>
<tr>
<td>0 - 100</td>
<td>6.87</td>
<td>6.87</td>
<td>6.73</td>
<td>6.75</td>
</tr>
</tbody>
</table>