Abstract

Fragmentation functions measured in e^+e^- and pp collisions are well reproduced via a fragmentation model based on microcanonical statistics and superimposed Euler-Gamma-type multiplicity fluctuations [1,2]. The power of the obtained analytic fragmentation function develops a double-logarithmic dependence on the QCD scale Q [3].

Besides, this function also describes transverse hadron spectra measured in pp and AA collisions at RHIC and LHC energies [4,5,6]. Interestingly, the power of the spectra of pions stemming from gg collisions exhibits a similar double-logarithmic dependence on the collision energy s and on the hadron multiplicity N (measured in the $|p_T|<1$ region) [6].

Statistical Jet Fragmentation?

Hadron distribution in a microcanonical jet of N hadrons (in 1 dimension) [1,2):

\[
\frac{dN}{dp} = \frac{1}{N!} e^{-\frac{p^2}{2}}
\]

Multiplicity fluctuations in jets:

\[
\Delta p = |p - p_{\text{mean}}|
\]

The multiplicity-averaged distribution:

\[
\frac{d\langle N \rangle}{dp} = \frac{1}{N!} e^{-\frac{p^2}{2}}
\]

Dependence of the fitted parameters on P_p:

\[
g(z) = \frac{1}{\ln x - \ln \left(\frac{1}{s}\right)}
\]

\[
g(z) = \frac{1}{\ln x - \ln \left(\frac{1}{s}\right)}
\]

Tranverse Spectra in pp

Hadron spectra in pp collisions can be described by the Tsallis distribution [5,6]:

\[
\frac{dN}{dp} = \frac{1}{\sqrt{\left(1 + Q + \frac{Q}{1 - |p|} - 1\right)}}
\]

Interestingly, transverse p_T spectra in pp collisions depends similarly on $|p_T|$ and on the multiplicity N in $|p_T|<1$ range [6].

\[
\frac{dN}{dp} = \frac{1}{\sqrt{\left(1 + Q + \frac{Q}{1 - |p|} - 1\right)}}
\]

Application in parton model calculation

At low energies, $z < 1$, the above formula approaches the Tsallis distribution [3].

\[
\frac{dN}{dp} = \frac{1}{\sqrt{\left(1 + Q + \frac{Q}{1 - |p|} - 1\right)}}
\]

AKK u, d, s, g fragmentation functions can be fitted by the Tsallis-type one using [3]:

\[
\frac{dN}{dp} = \frac{1}{\sqrt{\left(1 + Q + \frac{Q}{1 - |p|} - 1\right)}}
\]

Disentangling Soft & Hard Yields in Heavy-ion Collisions

See preliminary on arXiv!

References

Acknowledgement

This work was supported by Hungarian OTKA grants K104260, NK106119, and NHST 42 CN-1-2012-0016. Author GSB also thanks the Janos Bolyai Research Scholarship of the HAS.