Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

TECHNISCHE UNIVERSITÄT DARMSTADT

David Scheffler¹, Christian Schmidt², Philipp Scior¹, Dominik Smith¹, and Lorenz von Smekal^{1,3} ¹TU Darmstadt, ²Uni Bielefeld, ³Uni Gießen

Motivation

G₂-QCD

- understand phases of strong-interaction matter under extreme conditions in temperature and density
- develop reliable methods for finite baryon density where fermion sign problem prevents direct lattice Monte-Carlo simulations
- detour: QCD-like theories without fermion sign problem

This project: chiral properties

- preparations for finite density
- setting of (relative) temperature scale
- determine (unusual) chiral scaling behavior

Two-Color QCD

- Dirac operator has antiunitary symmetry
- \rightarrow no fermion sign problem
- \rightarrow extended flavor symmetry
- color-singlet diquarks: bosonic baryons
- would-be Goldstone bosons: pions and diquarks
- BEC-BCS crossover in diquark condensation phase

Chiral Symmetry Breaking Pattern

• continuum: $SU(2N_f) \rightarrow Sp(N_f)$ • staggered: $SU(2N_f) \rightarrow O(2N_f)$, here: $SU(4) \simeq O(6) \rightarrow O(4)$

wo-Color Lattice QCD (
$$N_f = 2$$
 Wilson fermions)

Boz, Cotter, Fister, Mehta, Skullerud, Eur. Phys. J. A49 (2013) 87 [arXiv:1303.3223]

Two-Color Polyakov-Quark-Meson-Diquark model

• gauge group of QCD replaced by exceptional Lie group G₂ • contains SU(3) as subgroup

- no fermion sign problem \rightarrow can be simulated at finite baryon density using standard lattice techniques
- without quarks: first order deconfinement transition
- 7 colors, 14 gluons

n_qa³

0.06

0.04

0.02

0.00

0.00

• contains bosonic as well as fermionic baryons

quark matte

G₂-mass spectrum and possible G₂-nuclear-matter transition

Maas, von Smekal, Wellegehausen, Wipf, Phys. Rev. D 86, 111901(R) (2012) [arXiv:1203.5653]

0.1

0

0.2

0.3

m/T

0.4

N_t=4 ⊢-+--+ $N_t=6$ \longrightarrow $N_t=8$ \longrightarrow \longrightarrow

fits - - - -

0.5

from linear fit: $b = 2.03 \pm 0.13$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 $log(N_t/4)$

Simulation Details

• $N_f = 2$ staggered quarks

$$\mathcal{D} = \frac{1}{2a} \sum_{\mu} \eta_{\mu}(x) \left(U_{\mu}(x) \delta_{y,x+\hat{\mu}} - U_{-\mu}(x) \delta_{y,x-\hat{\mu}} \right) + m \, \delta_{x,y}$$

with staggered phases $\eta_{\mu}(x) = (-1)^{x_0 + \dots + x_{\mu-1}}$ • $N_t = 4, 6, 8$ with aspect ratio $N_s/N_t = 4$ • finite temperature: vary coupling β • various masses for chiral extrapolation

Lichtenberg Cluster and local machines @ TU Darmstadt

• generation of gauge configurations via Rational Hybrid Monte-Carlo (RHMC) algorithm

Results

Magnetic Scaling

• determination of a critical exponent via susceptibility peak height:

• implemented with CUDA

• running on NVIDIA Tesla K20X (up to 1.3 TFlops in DP), GTX Titan or GTX 780

• inversion of fermion matrix is numerically expensive

• exemplary runtime:

 $N_t = 8$, $N_s = 32$, m/T = 0.04 data: ≈ 80 GPU months

• enables precise peak determination of chiral susceptibility

• combination of several ensembles at different values of the

• needs overlapping histograms

Ferrenberg-Swendsen Reweighting

coupling β (multi-histogram method)

• successful at $N_t = 4$ and 6, still problematic at $N_t = 8$

Outlook

• main goal: Polyakov loop potentials at finite density

• longer runs necessary at $N_t = 8$

• lines of constant physics, scale setting