Eigenmode Analysis of Anisotropic Flow
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1 Motivation

Methods currently used to analyze anisotropic floyw, (event-plane, cumuy

lants, etc.), were devised before the importance of exvaeeri#ent flow fluctua-
tions was recognized [1].

We argue that flow fluctuations can be obtained directly fratadby fu
exploiting the information contained in the two-particleri@lation matrix
(cosnA¢), whereA¢ is the azimuthal separation between two partic

ly
2]
es

general from different pseudorapidity bins), ane- ) denotes an average over

pairs of particles in an event and then over events in a deptcéass.

Our new method uses the eigenmodes and eigenvalues of thearnole
correlation matrix. It can be used to extract informatiortlospseudorapidity-
and transverse-momentum-dependence of flow fluctuatiorde®¥the appli-
cability of this method with Monte-Carlo simulations usiig transport mode
AMPT [3].

2 Method

Divide the detector acceptance ind bins in pseudorapidityr). For each
event and each bin, define the flow vectaf),,(n) in harmonicn as

M(n)
)=

J=1

eXP mgb]

where M (n) is the number of particles in the bin ang is the azimuthal
angle of a particle. Define the two-point correlator or ther&ation matrix

Voa(n,n') as [4]
Vaa(n.n') = (Re Qu(n)Q (') -

where (- -
Inside the brackets is the sum@k nAg¢ over all pairs in the same event.

If there are no flow fluctuations or nonflow correlations, tberelation ma-
trix factorizes

Vaa(mn') = (M) Mn))vn(n)on(n).
Experimentally, factorization is known to be only approximate [2].
Theoretically, flow fluctuations also break factorization [5].

In general,V,,A(n,n’) is symmetric and can be diagonalized.
no flow fluctuations or nonflow correlations, one eigenvasupasitive and all
others are 0. If there are flow fluctuations but no nonflow datiens, there

IS more then one positive eigenvalue, but no negative eajaay Short-range|

nonflow correlations generally yield both positive and negaeigenvalues.
Thus the results can be used to probe the validity of the flguothesis.
The correlation matri¥,, A (n, ") can be written as a sum of eigenmodes

(We have assumed for simplicity that all eigenvalues aréipes Each term
In the sum corresponds to a different component of flow fluaina.

The leading mode (i.e., one with the largest eigenvaluaesponds to the
usual anisotropic flow (Figure 1). It depends little on theymorapidityn.
v9(n) increases strongly with centrality, whereas the highemlo@ics increase
mildly with centrality.

Other eigenmodes correspond to flow fluctuations (FigureT2jey typi-
cally oscillate as a function of. Target-projectile symmetry implies that th
eigenmodes are either even or oddyjrup to statistical and systematic errors
The leading mode is even and the sub-leading modes altamataity. As
expected from flow fluctuations, they increase mildly witintcality.

The above analysis can be easily extended,tp;) andv,(n, p7). In Fig.
3, we show thep dependence of the leading and the first subleading mc
for n=2,3.

-} denotes average over events in a centrality class. Theitguan
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Figure 1: Simulations using the transport code AMPT [3]: ulssfor the
largest eigenmode, () — corresponding to the usual anisotropic flow — for
n = 2,3,4,5In Pb-Pb collisions at 2.76 TeV and two centralities.
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igure 2: First four eigenmodes of elliptic flow(n). Subleading eigenmodes

correspond to flow fluctuations.
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Figure 3: Leading and the first subleading eigenmodes ofllipi@and trian-

gular flows as a function of the transverse momentum.

4 Discussion

This new method, unlike traditional analysis methods, malse ofal
formation contained in two-particle azimuthal correlago Specifical
the detailed information on how they depend on the pseudhta

the in-
y, ltuses
gand/or

transverse momentum) of both particles. This informat®expressed in a

o/

handy way in terms of eigenvalues and eigenvectors, whiahbeadirectly
compared with a model calculation.

The condition that the largest eigenvalues should be pesgia new, non-

trivial test of the “flow hypothesis” that long-range coatbns are due to col-
lective flow.
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