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1 Motivation
Methods currently used to analyze anisotropic flow,vn, (event-plane, cumu-
lants, etc.), were devised before the importance of event-to-event flow fluctua-
tions was recognized [1].

We argue that flow fluctuations can be obtained directly from data by fully
exploiting the information contained in the two-particle correlation matrix [2]
〈cosn∆φ〉, where∆φ is the azimuthal separation between two particles (in
general from different pseudorapidity bins), and〈· · · 〉 denotes an average over
pairs of particles in an event and then over events in a centrality class.

Our new method uses the eigenmodes and eigenvalues of the two-particle
correlation matrix. It can be used to extract information onthe pseudorapidity-
and transverse-momentum-dependence of flow fluctuations. We test the appli-
cability of this method with Monte-Carlo simulations usingthe transport model
AMPT [3].

2 Method
Divide the detector acceptance intoN bins in pseudorapidity (η). For each
event and eachη bin, define the flow vectorQn(η) in harmonicn as

Qn(η) ≡

M(η)
∑

j=1

exp(inφj),

whereM (η) is the number of particles in the bin andφj is the azimuthal
angle of a particle. Define the two-point correlator or the correlation matrix
Vn∆(η, η

′) as [4]

Vn∆(η, η
′) ≡

〈

ReQn(η)Q
∗
n(η

′)
〉

.

where〈· · · 〉 denotes average over events in a centrality class. The quantity
inside the brackets is the sum ofcosn∆φ over all pairs in the same event.

If there are no flow fluctuations or nonflow correlations, the correlation ma-
trix factorizes

Vn∆(η, η
′) = 〈M (η)M (η′)〉vn(η)vn(η

′).

Experimentally, factorization is known to be only approximate [2].
Theoretically, flow fluctuations also break factorization [5].

In general,Vn∆(η, η
′) is symmetric and can be diagonalized. If there are

no flow fluctuations or nonflow correlations, one eigenvalue is positive and all
others are 0. If there are flow fluctuations but no nonflow correlations, there
is more then one positive eigenvalue, but no negative eigenvalue. Short-range,
nonflow correlations generally yield both positive and negative eigenvalues.
Thus the results can be used to probe the validity of the flow hypothesis.

The correlation matrixVn∆(η, η
′) can be written as a sum of eigenmodes

Vn∆(η, η
′) =

N
∑

α=1

〈M (η)M (η′)〉v
(α)
n (η)v

(α)
n (η′).

(We have assumed for simplicity that all eigenvalues are positive). Each term
in the sum corresponds to a different component of flow fluctuations.

The leading mode (i.e., one with the largest eigenvalue) corresponds to the
usual anisotropic flow (Figure 1). It depends little on the pseudorapidityη.
v2(η) increases strongly with centrality, whereas the higher harmonics increase
mildly with centrality.

Other eigenmodes correspond to flow fluctuations (Figure 2).They typi-
cally oscillate as a function ofη. Target-projectile symmetry implies that the
eigenmodes are either even or odd inη, up to statistical and systematic errors.
The leading mode is even and the sub-leading modes alternatein parity. As
expected from flow fluctuations, they increase mildly with centrality.

The above analysis can be easily extended tovn(pT ) andvn(η, pT ). In Fig.
3, we show thepT dependence of the leading and the first subleading modes
for n=2,3.

3 Results
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Figure 1: Simulations using the transport code AMPT [3]: results for the
largest eigenmodevn(η) — corresponding to the usual anisotropic flow — for
n = 2, 3, 4, 5 in Pb-Pb collisions at 2.76 TeV and two centralities.
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Figure 2: First four eigenmodes of elliptic flowv2(η). Subleading eigenmodes
correspond to flow fluctuations.
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Figure 3: Leading and the first subleading eigenmodes of the elliptic and trian-
gular flows as a function of the transverse momentum.

4 Discussion
This new method, unlike traditional analysis methods, makes use ofall the in-
formation contained in two-particle azimuthal correlations. Specifically, it uses
the detailed information on how they depend on the pseudorapidity (and/or
transverse momentum) of both particles. This information is expressed in a
handy way in terms of eigenvalues and eigenvectors, which can be directly
compared with a model calculation.

The condition that the largest eigenvalues should be positive is a new, non-
trivial test of the “flow hypothesis” that long-range correlations are due to col-
lective flow.
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