The centrality and energy dependence of the elliptic flow of light nuclei and hadrons in STAR

Outline
- Introduction & motivation
- STAR experiment at RHIC
- Results
- Summary

Rihan Haque
(for the STAR Collaboration)
NISER, Bhubaneswar, India

Quark Matter
Darmstadt
May 19-24, 2014
Azimuthal anisotropy

\[\frac{\partial P}{\partial x} > \frac{\partial P}{\partial y} \]

Interactions

Pressure (P)

Azimuthal distribution of produced particles can be described as a Fourier series. The second order coefficient,

\[\langle \cos(2(\phi - \psi_R)) \rangle = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle \]

- Sensitive to early times in the evolution of the system

An estimate of \(\psi_R \), namely Event Plane (\(\psi_2 \)) is calculated using produced particles in mid-rapidity.

Motivation

- Particle anti-particle v_2 shows difference.

→ How does the difference depend on centrality and energy?

- hadron v_2 show constituent quark (NCQ) scaling.

- Nuclei are expected to form at a later stage due to their low binding energy

→ Can we expect mass number scaling of nuclei v_2 ?

→ How does nuclei and anti-nuclei v_2 compare?

→ Is there any centrality dependence of nuclei v_2 ?

The STAR experiment

1. Time Projection Chamber (TPC)
 pseudo-rapidity window: $-1.0 < \eta < 1.0$
 full azimuthal coverage.

2. Time of Flight (ToF)
 pseudo-rapidity window: $-0.9 < \eta < 0.9$
 full azimuthal coverage

Using TPC and ToF π, K, p can be identified up to $p_T \sim 3.0$ GeV/c,

Light nuclei identification using TPC d, d-bar, triton: $p_T \sim 1.0$ GeV/c, and 3He up to 4.5 GeV/c

Light nuclei identification using ToF d, d-bar, triton: $p_T \sim 4.0$ GeV/c,
Measurement of nuclei v_2

- Elliptic flow of d, \bar{d}, t, 3He, $\overline{^3}$He measured at mid-rapidity.
- η sub-eventplane method was used with η-gap = 0.1

$\sqrt{s_{NN}}$ from 19.6 GeV to 200 GeV

$\sqrt{s_{NN}} = 19.6$ GeV, $\sqrt{s_{NN}} = 11.5$ GeV, $\sqrt{s_{NN}} = 7.7$ GeV, $\sqrt{s_{NN}} = 39$ GeV, $\sqrt{s_{NN}} = 62.4$ GeV, $\sqrt{s_{NN}} = 200$ GeV

Centrality: 0-80%

STAR Preliminary

Mass ordering of v_2

$\bar{v}_{NN} = 200$ GeV

$\bar{v}_{NN} = 62.4$ GeV

$\bar{v}_{NN} = 39$ GeV

$\bar{v}_{NN} = 27$ GeV

$\bar{v}_{NN} = 19.6$ GeV

$\bar{v}_{NN} = 11.5$ GeV

$\bar{v}_{NN} = 7.7$ GeV

\rightarrow Nuclei v_2 shows mass ordering at low p_T similar to hadrons

\(v_2 \) of triton (t) and \(^3\text{He}\)

\[v_2 \text{ of } t \text{ and } ^3\text{He} \text{ are of similar magnitude (within statistical uncertainty)} \]
v_2 of particles and anti-particles

Δv_2 for 10-40% centrality is similar to minimum bias result

Δv_2 relative to proton v_2 shows a centrality dependence

Nuclei and anti-nuclei v_2 shows a difference at 200 GeV

Statistical uncertainties large at lower beam energies to make definite conclusions.
Centrality dependence of nuclei v_2

$\sqrt{s_{_{NN}}}$ = 200 GeV
$\sqrt{s_{_{NN}}}$ = 62.4 GeV
$\sqrt{s_{_{NN}}}$ = 39 GeV
$\sqrt{s_{_{NN}}}$ = 27 GeV

$\sqrt{s_{_{NN}}}$ = 19.6 GeV
$\sqrt{s_{_{NN}}}$ = 11.5 GeV
$\sqrt{s_{_{NN}}}$ = 7.7 GeV

\to Nuclei v_2 shows centrality dependence for all energies

Rihan Haque, NISER, India
NCQ scaling of hadron v_2

- NCQ scaling observed for particle and anti-particle groups separately for beam energy ≥ 19.6 GeV
- Scaling holds for $1.5 < p_T < 5.0$ GeV/c
- More statistics is needed for 7.7 and 11.5 GeV/c

Precision measurement of v_2 of ϕ and Ω

- Mass ordering observed for $p_T < 2.0$ GeV/c
- Baryon – meson splitting for $2.0 < p_T < 5.0$ GeV/c

→ High precision measurement of ϕ and Ω v_2 agree with the previous physics conclusion of partonic collectivity at 200 GeV
Nuclei v_2 show mass number scaling for $p_T/A \sim 1.5$ GeV/c for all beam energies

\Rightarrow Support the general idea that nuclei are formed by coalescence of nucleons
Coalescence model results

\[\text{Coalescence model agrees with data} \]

→ Another indication of coalescence of nucleons to form nuclei

- Probability for producing a nucleus is given by the overlap of nucleon phase-space distribution with the Wigner phase-space function of nucleons inside the nuclei.
- Nucleon phase space information used from a transport (AMPT) model.

Summary

(A) New Measurement presented:
✓ Energy ($\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39, 62.4$ and 200 GeV) and centrality dependence of nuclei v_2 presented.
✓ Centrality dependence of difference in v_2 of proton and anti-proton at $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39, 62.4$ presented.

(B) Observation and Physics conclusion:
1. Nuclei v_2 versus p_T shows a clear centrality dependence and mass ordering when compared to identified hadrons at all beam energies studied
 → Mass ordering of v_2 occurs naturally in a hydrodynamic model.
2. Nuclei v_2 versus p_T shows mass number scaling upto $p_T/A = 1.5$ GeV/c and the magnitude of nuclei v_2 versus p_T are reproduced by a Coalescence model.
 → Both these support the physics picture of coalescence of nucleons as the dominant mechanism of nuclei production.
3. The difference in v_2 of proton and anti-proton is observed to be similar at all collision centralities studied for the BES energies. A centrality dependence appears when this difference is normalized to proton v_2 at the respective beam energies
 → The results implies hadronic interactions play an important role at lower beam energies.
Other interesting results on flow from STAR (Posters):

- Triangular Flow of Identified Hadrons in Au+Au Collisions at $\sqrt{s_{NN}} = 39$ and 200 GeV
 - Xu Sun *(Poster Id: H-37)*

- Measurement of higher harmonic flow of ϕ meson in STAR at RHIC
 - Mukesh Sharma *(Poster Id: H-03)*

Thanks..

Acknowledgements:
STAR Collaboration, NERSC Grid (LBNL), RCAS Grid (BNL), VECC TIER2 Grid (VECC), KONARK Grid (NISER).

Rihan Haque is supported by DAE-BRNS project grant No. 2010/21/15-BRNS/2026.
Back up is here…
Centrality dependence of hadron v_2

Anti-particles:

particles:
Baryon meson ratio

\[v_2 \times m_T - m_0 \text{ data fitted} \]

\[v_2 \text{ baryon to } v_2 \text{ meson ratio taken at } m_T - m_0 = 2.0 \text{ GeV/c for baryons and (2/3) of that value for mesons} \]

- Splitting larger for particles than for anti-particles
- Centrality dependence only for anti-particles
- No energy dependence