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Abstract: Heavy quark pair production in pA collisions is a good probe to study the parton (gluon) saturation in the nucleus. In this presentation, we report our numerical 
results on the nuclear modification factor (RpA) of J/ψ and D productions for the minimum bias event in pA collisions at the RHIC and LHC energies within the Color Glass 
Condensate (CGC) and also discuss the impact parameter dependence of the J/ψ RpA. In the latter case, we show that the RpA of J/ψ productions in peripheral collisions is 
strongly suppressed at forward rapidity and differs from the data. This means that we need to carefully consider the nuclear geometry in order to compute the gluon 
distribution in the nucleus. 

Introduction 
!
• The goals of ultrarelativistic heavy ion collisions (HICs) physics are to create 
   quark-gluon plasma (QGP) and to understand its properties. 
• Heavy quarks produced in initial hard process 
   → Subsequent interactions reflect medium properties. 
• Initial cold nuclear matter (CNM) effects should be studied in pA collisions 
   → A controlled baseline in the context of both HICs and QGP physics. 
• We focus on the parton saturation effect in the target nucleus because the saturation scale 
 becomes semi hard at the LHC and larger at forward rapidity (very small Bjorken’s x). 
               
!
 • Saturation scale will become relevant to both light hadron and heavy quark pair (    ) productions at the LHC.
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(M : invariant mass of the quark pair)

Momentum fraction of the incoming gluon
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Framework 
!
• Gluons from the target nucleus in the CGC. 
!
!
!
!
!
!
!
!
!
• Heavy quark pair production from the background gauge field at the order   
!
!
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!
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- Large-x gluon : Classical field from Yang-Mills equation

- Small-x gluon : Fluctuation emerging from quantum evolution
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- Eikonal phases (Wilson lines)
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color charge density

- Multiple scattering before and after the quark pair production.

gA / g2⇢A = O(1)In the covariant gauge, it is actually found that                                 .

4-point function (4 Wilson lines) appears in the quark pair 
production cross section.
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Squared amplitude

neglected in the large-Nc limit
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A part of NLO correction; quark loop

r = r1 + r2This calculation includes 
 - Multiple scattering of classical gluon 
 - Quantum evolution effect via BK equation.

Numerical results • RpA of J/ψ production in the Color Evaporation Model

• Set up : Initial condition of dipole amplitude
AAMQS model Albacete et.al. (2011)
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• RpA of D meson production (Minimum bias event)
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- Minimum bias event

by global fitting of DIS
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- Central and peripheral event

with simple thickness function
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Summary: In this CGC calculation with large-Nc approximation, we have shown that RpA of J/ψ and D meson productions are strongly suppressed in the low-p⊥ region at 
forward rapidity due to the multiple scattering and saturation effects in the target nucleus. Hadronization is treated in a simple model. These productions reflect the behavior of 
multi parton function. The results of central and peripheral collisions suggest an importance of more realistic treatment of nuclear geometry. In future work, we will use more 
sophisticated nuclear profile and consider the NLO correction in hard process and hadronization dynamics. 
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• Azimuthal angle correlation (Minimum bias event)
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Leading twist

- The number of net gluons increases with decreasing in Bjorken’x. 
- low-k⊥ distribution is suppressed by gluon saturation.  
- high-k⊥ region is enhanced by gluon radiations.
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