Dijets in p+Pb collisions and their quantitative constraints for nuclear PDFs

Hannu Paukkunen

University of Jyväskylä & Helsinki Institute of Physics, Finland

Based mainly on

Eskola, Paukkunen, Salgado: JHEP 1310 (2013) 213
The nuclear gluon quest

- High-pT jets in p+Pb at the LHC: possible resolution to the nuclear-gluon controversy?

- EPS09 and nCTEQ: RHIC pion data suggests gluon antishadowing and EMC effect

\[E \frac{d^3\sigma^H}{dp^3} = \sum_{a,b,c} f_a(x_a, \mu_f) \otimes f_b(x_b, \mu_f) \otimes D^H_c(z_c, \mu_f') \otimes d\sigma_{ab->cX} \]

- DSSZ: Nuclear modifications in fragmentation functions - no effects in gluons PDFs.

- HKN07: No pion data at all - almost no gluon constraints
Kinematics of the CMS dijet measurement

- Dijets binned in dijet “pseudorapidity” ...

\[\eta_{\text{dijet}} \equiv (\eta_1 + \eta_2)/2. \]

... and normalized to the total yield

- Advantage of large pT:

 non-perturbative corrections less important

Proton beam with \(E_p = 4 \text{ TeV} \)

Lead beam with \(E_{\text{Pb}} = (82/208) \times 4 \text{ TeV} = 1.58 \text{ TeV} \)

\[\begin{array}{c}
\text{Pb} \\
\text{p} \\
\end{array} \]

The midrapidity shifts by

\[\eta_{\text{shift}} \equiv 0.5 \log \left(\frac{E_{\text{Pb}}}{E_p} \right) \approx -0.465 \]

Some extra “tweaking” needed to include such shifts to NLO Monte-Carlos
Large NLO correction and scale uncertainty for the absolute spectrum (no cut on dijet mass)

Any precision physics obtainable?
Large NLO correction and scale uncertainty for the absolute spectrum (no cut on dijet mass)

Any precision physics obtainable?

The NLO correction is almost constant for $-2 < \eta < 1$

Normalize by the total cross section
Large NLO correction and scale uncertainty for the absolute spectrum (no cut on dijet mass)

Any precision physics obtainable?

The NLO correction is almost constant for $-2 < \eta < 1$

Normalize by the total cross section

Normalized distribution (in the central region) stable against QCD corrections

Reduction of the baseline errors

Expect also the non-perturbative corrections (underlying event, hadronization) to partly cancel
Comparison to the preliminary data

\[\sqrt{s} = 5.02 \text{TeV} \]

Data points from arXiv:1401.4433 "by eye"
CT10 alone is close but not quite...
Comparison to the preliminary data

- CT10 alone is close but not quite...

- CT10+DSSZ: almost no effects
Comparison to the preliminary data

- CT10 alone is close but not quite...

CT10+DSSZ: almost no effects...
CT10+HKN07: wrong corrections...

$\sqrt{s} = 5.02\text{TeV}$

Data points from arXiv:1401.4433 “by eye”
CT10 alone is close but not quite...

CT10+DSSZ: almost no effects...
CT10+HKN07: wrong corrections...
CT10+EPS09: Spot on!
CT10 alone is close but not quite...

CT10+DSSZ: almost no effects...
CT10+HKN07: wrong corrections...
CT10+EPS09: Spot on!

The data support gluon antishadowing + EMC effect

Predicted in EPS09 by low-pT RHIC pion data

Valence quarks become important here – constraints for the up vs. down flavor separation?
The Hessian reweighting

- **Standard Hessian method to quantify PDF errors**

\[
\chi^2\{a\} = \sum_k \left[\frac{X^\text{theory}_k[f] - X^\text{data}_k}{\delta^\text{data}_k} \right]^2 \approx \chi^2_0 + \sum_{ij} \delta a_i H_{ij} \delta a_j \approx \chi^2_0 + \sum_i z_i^2
\]

- **In the case of a global tolerance, the error sets are defined in the \(z \) space**

\[
z(S_0) = (0, 0, \ldots, 0), \quad z(S_1^+) = \pm \sqrt{\Delta \chi^2} (1, 0, \ldots, 0) \\
z(S_2^+) = \pm \sqrt{\Delta \chi^2} (0, 1, \ldots, 0) \\
\vdots \\
z(S_{N_{\text{eig}}}^+) = \pm \sqrt{\Delta \chi^2} (0, 0, \ldots, 1)
\]

- **Add the contribution of new data \(\{y\} \) (with covariance matrix \(C \)) to the expression above**

\[
\chi^2_{\text{new}} \equiv \chi^2_0 + \sum_k z_k^2 + \sum_{i,j=1}^{N_{\text{data}}} (y_i[f] - y_i) C_{ij}^{-1} (y_j[f] - y_j)
\]

and estimate the theory values \(y_i[f] \) by

\[
y_i[f] \approx y_i[S_0] + \left. \sum_{k=1}^{N_{\text{eig}}} \frac{\partial y_i[S]}{\partial z_k} \right|_{S=S_0} z_k \approx y_i[S_0] + \sum_{k=1}^{N_{\text{eig}}} D_{ik} w_k
\]

\[
D_{ik} \equiv \frac{y_i\left[S_k^+\right] - y_i\left[S_k^-\right]}{2}
\]

\[
w_k \equiv \frac{z_k}{\sqrt{\Delta \chi^2}}
\]
The Hessian reweighting

The new global minimum is obtained by the matrix equation

\[B_{kn} = \sum_{i,j} D_{ik} C_{ij}^{-1} D_{jn} + \Delta \chi^2 \delta_{kn} \]

\[\tilde{w}_{\min} = -B^{-1} \tilde{a} \]

The corresponding set of PDF is given by

\[a_k = \sum_{i,j} D_{ik} C_{ij}^{-1} (y_j [S_0] - y_j) \]

The new \(\chi^2 \) can be written as

\[\chi^2_{\text{new}} = \chi^2_{\text{new}} \bigg|_{\tilde{w} = \tilde{w}_{\min}} + \sum_{ij} \delta w_i B_{ij} \delta w_j \]

...and the new PDF error sets defined by diagonalizing the new “Hessian matrix” B

Estimates the effect of new data in a global PDF fit
Effect on EPS09?

- All uncertainties taken as uncorrelated and lifted from arXiv:1401.4433
- The baseline (CT10NLO) errors accounted for as correlated systematic errors

Relatively small effects – only a moderate variation in χ^2 for different PDF eigenvectors
Effect on EPS09?

- All uncertainties taken as uncorrelated and lifted from arXiv:1401.4433

- The baseline (CT10NLO) errors accounted for as correlated systematic errors

Relatively small effects – only a moderate variation in χ^2 for different PDF eigenvectors

- Give these data more weight to better see the tendency

- The data appear completely consistent with EPS09 – would improve the large-x gluons

Could substitute the RHIC pion data
Forward-to-backward asymmetry extracts the nuclear modification explicitly

Even more robust against NNLO corrections!
Baseline > 1 for asymmetric cuts in the c.m. frame

Need the correlated data systematics to fully use the forward-to-backward ratios
Summary

- The data from LHC p+Pb run expected to probe various aspects of nPDFs

 Are they really universal?

- Already the very first CMS dijet data appears to distinguish between available parametrizations

 Suggests antishadowing and EMC effect for gluons

- The effect of CMS dijet data for EPS09 estimated by PDF reweighting technique

 Consistent with EPS09

 Would provide constraints for large-x gluons

- To get most out of the p+Pb jet data need the systematic data correlations

 In the same way as in p+p