

W-boson production measurement in p-Pb collisions with ALICE

Francesco Bossù for the ALICE collaboration iThemba LABS, Somerset West, South Africa

Why and how

Motivations

- ► W[±] are produced in initial hard scatterings and are not affected by the strong interaction.
- ► In Pb–Pb collisions: test the scaling of hard processes with the number of binary nucleon-nucleon collisions.
- ► In p—Pb collisions: investigate cold nuclear matter effects and constrain nuclear PDF.

Measurement in ALICE

- ▶ In the muonic decay channel $W^\pm \to \mu^\pm + \nu$
- ► Forward muon spectrometer

Performance studies: Z. Conesa del Valle [ALICE-INT-2006-021 & Eur. Phys. J. C49 (2007) 149] based on $L=5\cdot 10^{26} {\rm cm}^{-2} {\rm s}^{-1},\,t=10^6$

Data sample

- ▶ p—Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with two opposite configurations of circulating beams.
- ▶ Trigger condition: coincidence between a signal in both the VZERO detectors (the minimum bias trigger) and in the muon trigger system for tracks with $p_T \gtrsim 4 \text{ GeV}/c$.
- ▶ Integrated luminosity: p-going direction: $5.01 \pm 0.17~\mathrm{nb}^{-1}$, Pb-going direction: $5.81 \pm 0.18~\mathrm{nb}^{-1}$

Track selection

- ▶ Geometrical acceptance selection: $-4 < \eta^{\mu}_{lab} < -2.5$, $170^{o} < \theta^{\mu}_{abs} < 178^{o}$
- ▶ Muon identification: matching of reconstructed tracks in the trigger and tracking systems.
- ► Fake and beam-gas track rejection: cut on the product of the momentum and the transverse distance of the track to the interaction vertex.

Event activity selection

► Estimators: Clusters in the 2nd SPD layer (CL1), multiplicity in VZERO (V0A, V0C) and neutron energy in ZDC (ZNA, ZNC) (A. Toia, in this conference)

ALICE apparatus

The muon spectrometer acceptance:

The proton beam direction defines positive rapidities.

Other detectors used in this analysis:

- ▶ Silicon Pixel Detector (SPD): vertex reconstruction and multiplicity estimation ($|\eta_{lab}| < 1.4$).
- ▶ VZERO: scintillator arrays, V0A (2.8 < η_{lab} < 5.1) and V0C ($-3.7 < \eta_{lab} < -1.7$), for trigger and multiplicity estimation.
- ightharpoonup Zero Degree Calorimeter (ZDC): $\pm 112.4~\mathrm{m}$ from the interaction point, event class estimation.

Analysis method

The number of $\mu^{\pm} \leftarrow W^{\pm}$ is extracted by fitting the p_T -distribution of single muons.

$$f(\mathbf{p}_{\mathrm{T}}) = N_{\mathrm{bkg}} \cdot f_{\mathrm{bkg}}(\mathbf{p}_{\mathrm{T}}) + N_{\mu \leftarrow \mathrm{W}} \cdot f_{\mu \leftarrow \mathrm{W}}(\mathbf{p}_{\mathrm{T}}) + N_{\mu \leftarrow \mathrm{Z}/\gamma *} \cdot f_{\mu \leftarrow \mathrm{Z}/\gamma *}(\mathbf{p}_{\mathrm{T}})$$
(1)

Background description

- ► ATLAS function $f_{bkg}(p_{\mathrm{T}}) = A \cdot \exp\left(-B \cdot p_{\mathrm{T}}\right) + C \cdot \frac{\exp(-D \cdot \sqrt{p_{\mathrm{T}}})}{p_{\mathrm{T}}^{2.5}}$ [ATLAS-CONF-2011-078]
- ▶ Only the 2nd term of ATLAS function: $f_{bkg}(p_T) = A \cdot \frac{\exp(-B \cdot \sqrt{p_T})}{p_T^C}$
- $\blacktriangleright \mu^{\pm} \leftarrow B + \mu^{\pm} \leftarrow D$ template from FONLL-based MC simulations [JHEP 1210 (2012) 137]

W^{\pm} and Z^0/γ^* templates

Templates from realistic simulations of W^\pm and Z^0/γ^*

- ► POWHEG [JHEP 0807 (2008) 060] generator with CTEQ6m PDF set and GEANT3 for muon propagation through the apparatus with detailed description of detector effects: templates used for signal extraction.
- ▶ Pythia-based MC (CTEQ6I PDF set and EPS09 nPDF): estimation of shadowing effects and systematics on MC generators.
- ► Simulations performed both for pp and pn collisions. p—Pb templates obtained by combining the results as:

 1 $dN_{\rm Pl}$ 7 1 $dN_{\rm Pl}$ 7 1 $dN_{\rm Pl}$ 7 1 $dN_{\rm Pl}$

$$\frac{1}{N_{\text{pPb}}} \cdot \frac{dN_{\text{pPb}}}{d\boldsymbol{p}_{\text{T}}} = \frac{Z}{A} \cdot \frac{1}{N_{\text{pp}}} \cdot \frac{dN_{\text{pp}}}{d\boldsymbol{p}_{\text{T}}} + \frac{A - Z}{A} \cdot \frac{1}{N_{\text{pn}}} \cdot \frac{dN_{\text{pn}}}{d\boldsymbol{p}_{\text{T}}}$$
(2)

► Systematic uncertainty on the efficiency due to imperfect detector description in the MC obtained by varying the detector parameters in the simulations within a realistic range.

ATLAS function N_{$\mu^+\leftarrow W^-$}=380.6±23.5 \rightarrow data $\chi^2/\text{ndf}=85.1/64$ Fit Range: 12< $p_T^{\mu^+}<80$ GeV/c $2.03< y_{\text{cms}}^{\mu^+}<3.53$ p-Pb \ $s_{\text{NN}}=5.02$ TeV ALICE Preliminary

FONLL based template

Signal extraction

- ► Fractions $N_{\mu\leftarrow Z/\gamma*}/N_{\mu\leftarrow W}$ fixed: estimated with POWHEG (Pythia6.4 for systematics).
- Max-Likelihood fit method.
- ► Fit to data repeated by varying:
 - $\triangleright p_{\mathrm{T}}$ -range of the fit.
 - ► Background description.
 - MC templates obtained with two sets of realistic description of the detector.
- ▶ Two sets of $N_{\mu\leftarrow Z/\gamma*}/N_{\mu\leftarrow W}$

Raw number of $\mu^+ \leftarrow W^+$ and $\mu^- \leftarrow W^-$

▶ Extracted by integrating the $\mu^\pm \leftarrow \mathrm{W}^\pm$ templates for $p_\mathrm{T}^\mu > 10 \mathrm{GeV}/c$

Systematic uncertainties

Signal extraction	from \sim 8% to \sim 24%
$Acc. \times Eff.$	2.7%
Luminosity	3.4%, 3.2%
Pileup	from 0 to 7.5%
$\langle N_{ m coll} angle$	from 8% to 21%

Results

$\mu^+ \leftarrow W^+$ and $\mu^- \leftarrow W^-$ cross sections

- ► Cross sections measured in $2.03 < y_{\rm cms}^{\mu} < 3.53$ and $-4.46 < y_{\rm cms}^{\mu} < -2.96$. Large difference between $\mu^+ \leftarrow {\rm W}^+$ and $\mu^- \leftarrow {\rm W}^-$ at backward rapidity, comparable at forward rapidity.
- ▶ POWHEG cross section at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$:
- $ightharpoonup \sigma_{\mathrm{NN}}^{\mathrm{hard}}$: pp and pn productions combined using Eq.2; $\sigma_{\mathrm{AB}}^{\mathrm{hard}} = AB\sigma_{\mathrm{NN}}^{\mathrm{hard}}$
- ▶ Our measurements agree with the expectations from POWHEG within 1.5σ .
- ▶ POWHEG predictions do not include shadowing effects.

$\mu^{\pm} \leftarrow \mathrm{W}^{\pm}$ yield normalized to $\langle N_{\mathrm{coll}} \rangle$

- ▶ Results for $\mu^+ \leftarrow W^+$ and $\mu^- \leftarrow W^-$ are added together to increase the statistics.
- $ightharpoonup \langle N_{\rm coll}^{\rm Glauber} \rangle$ values estimated using Glauber fits for V0A, V0C and CL1 multiplicity distributions.
- $\triangleright \langle N_{\rm coll}^{\rm mult} \rangle$ for ZNA and ZNC estimators: from $\langle N_{\rm part}^{\rm mult} \rangle$ calculated by scaling the $\langle N_{\rm part} \rangle$ in minimum-bias collisions by the ratio between the average multiplicity density measured at mid-rapidity for a given ZN energy event class and the one measured in minimum bias collisions.
- ▶ Within uncertainties, the yield of $\mu^{\pm} \leftarrow W^{\pm}$ per binary collision is independent of the collision multiplicity.