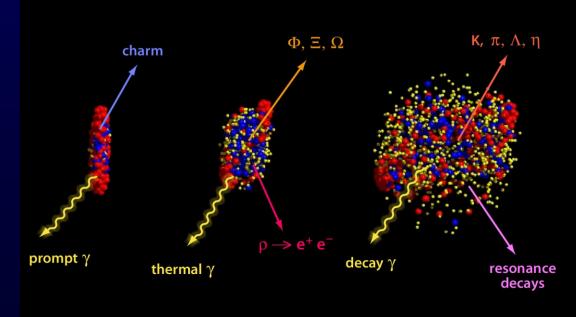


Phenomenology of photon and di-lepton production in relativistic nuclear collisions

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

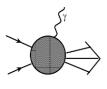


Electromagnetic probes: photons and dileptons

Feinberg (76), Shuryak (78)

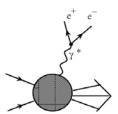
- Advantages:
- ✓ dileptons and real photons are emitted from different stages of the reaction and not effected by finalstate interactions
- ✓ provide undistorted information about their production channels
- ✓ promising signal of QGP ,thermal' photons and dileptons
- Requires theoretical models which describe the dynamics of heavy-ion collisions during the whole time evolution!

- Disadvantages:
- low emission rate
- production from hadronic corona
- many production sources which cannot be individually disentangled by experimental data



Modeling of photon/dilepton emission

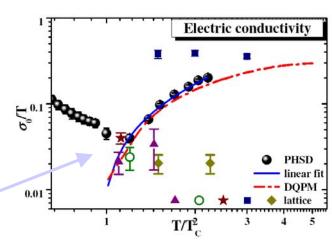
I. Emission rate from thermal field theory:


Feinberg (76), McLerran, Toimela (85), Weldon (90), Gale, Kapusta (91)

Photons:
$$q_{\theta} \frac{d^{3}R}{d^{3}q} = -\frac{g_{\mu\nu}}{(2\pi)^{3}} Im \prod_{\mu\nu} (q_{\theta} = |\vec{q}|) f(q_{\theta}, T)$$

$$= |\vec{q}| f(q_a, T)$$

$$f(q_0,T)=\frac{1}{e^{q_0/T}-1}$$



- Dileptons: $E_{+}E_{-}\frac{d^{3}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}} \frac{1}{a^{4}} L_{\mu\nu} \underline{Im} \Pi^{\mu\nu}(q_{\theta}, \vec{q}) f(q_{\theta}, T)$
 - $L_{\mu\nu}$ is the electromagnetic leptonic tensor
- $\Pi_{\mu\nu}$ is the retarded photon self energy at finite T : $\Pi_{\mu\nu} \sim i \int d^4x \ e^{ipx} < [J_{\mu}(x), J_{\nu}(\theta)] >_T$
- □ Hadron phase: using VDM: $Im\Pi \sim ImD^{\circ}$ in-medium ρ -meson spectral function from many-body approach (cf. Rapp, Chanfrey, Wambach, NPA 617 (1997) 472)
- → study of the in-medium properties of hadrons at high baryon density and T
- restoration of chiral symmetry (ρ-a₁):

ImD^o ~> chiral condensate (by Weinberg sum rules) (cf. Hohler, Rapp, arXiv:1311.2921)

- \square Rates at $q_0 \rightarrow 0$ are related to electric conductivity σ_0
- → Probe of electric properties of the QGP

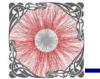
$$q_{\theta} \frac{dR}{d^{4}x d^{3}q}\bigg|_{q_{\theta} \to \theta} = \frac{T}{4\pi^{3}} \sigma_{\theta}$$

PHSD plot from Cassing et al., PRL 110 (2013) 182301; cf. also NJL: Marty et al., PRC87 (2013) 3, 034912; poster by R.Marty QM'14

Modeling of photon/dilepton emission

II. Emission rate from relativistic kinetic theory:

(e.g. for 1+2 \rightarrow γ +3)

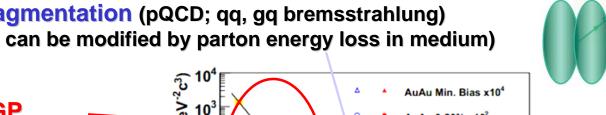

Applicable also for non-equilibrium system!

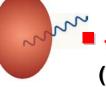
$$q_{0} \frac{d^{3}R}{d^{3}q} = \int \frac{d^{3}p_{1}}{2(2\pi)^{3}E_{1}} \frac{d^{3}p_{2}}{2(2\pi)^{3}E_{2}} \frac{d^{3}p_{3}}{2(2\pi)^{3}E_{3}} (2\pi)^{4} \delta^{4}(p_{1} + p_{2} - p_{3} - q)$$

$$\times |M|^{2} \frac{f(E_{1})f(E_{2})[1 \pm f(E_{3})]}{2(2\pi)^{3}}$$
• $f(E)$ - distribution function

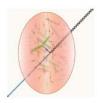
- M invariant scattering matrix element from microscopic models
- Modeling of hadronic elementary reactions:
 Chiral models, OBE models,... (Born-type diagrams)
- Problems:
- □ very limited experimental information on mm, mB elementary reactions
- ☐ Hadrons change their properties in the hot and dense medium:
- → from vacuum cross sections to in-medium, i.e. from ,T-matrix' to ,G-matrix' approaches (many-body theory)

E.g. : ρ -meson collisional broadening – important for dilepton studies!

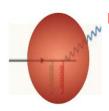


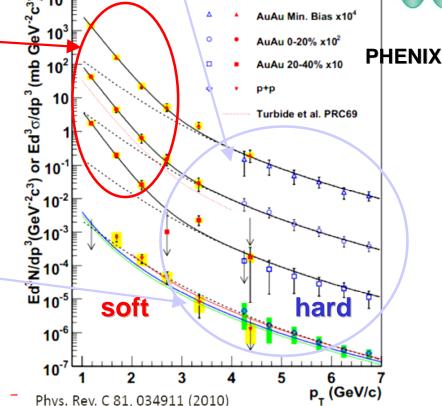

Production sources of photons in p+p and A+A

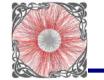
Decay photons (in pp and AA):


$$\mathbf{m} \rightarrow \gamma + \mathbf{X}, \ \mathbf{m} = \pi^0, \, \eta, \, \omega, \, \eta', \, \mathbf{a}_1, \, \dots$$

- **Direct photons:** (inclusive(=total) decay) measured experimentally
 - hard photons: (large p_T , in pp and AA)
- prompt (pQCD; initial hard N+N scattering)
- jet fragmentation (pQCD; qq, gq bremsstrahlung) (in AA can be modified by parton energy loss in medium)

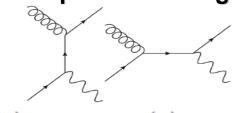



thermal photons: .
(low p_T, in AA)



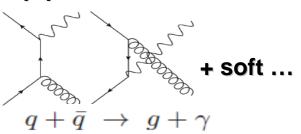
jet-γ-conversion in plasma (large p_T, in AA)

jet-medium photons (large p_T , in AA) - scattering of hard partons with thermalized partons $q_{hard}+g_{QGP}\rightarrow \gamma+q$, $q_{hard}+qbar_{QGP}\rightarrow \gamma+q$



Production sources of thermal photons

Thermal QGP:


HTL program (Klimov (1981), Weldon (1982), Braaten & Pisarski (1990); Frenkel & Taylor (1990), ...)

Compton scattering

$$q(\bar{q}) + g \rightarrow q(\bar{q}) + \gamma$$

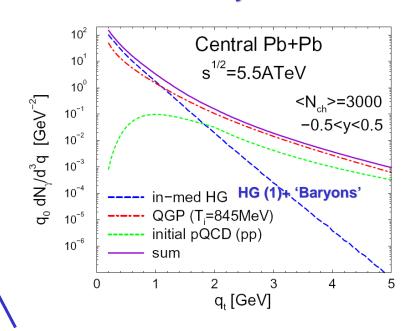
q-qbar annihilation

Rates beyond pQCD: off-shell massive q, q

(used in PHSD)

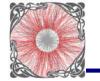
O. Linnyk, JPG 38 (2011) 025105; Poster by O. Linnyk & QM'2014

- pQCD LO: 'AMY' Arnold, Moore, Yaffe, JHEP 12, 009 (2001)
- pQCD NLO: talk by Jacopo Ghiglieri

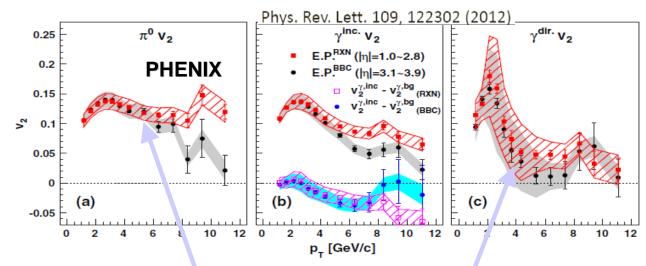

Hadronic sources:

(1) secondary mesonic interactions: $\pi+\pi \rightarrow \rho+\gamma, \ \rho+\pi \rightarrow \pi+\gamma, \ \pi+K \rightarrow \rho+\gamma, \dots$

(2) meson-meson and meson-baryon bremsstrahlung:

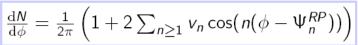

$$m+m \rightarrow m+m+\gamma$$
, $m+B \rightarrow m+B+\gamma$, $m=\pi,\eta,\rho,\omega,K,K^*,...$, $B=p,\Delta,...$

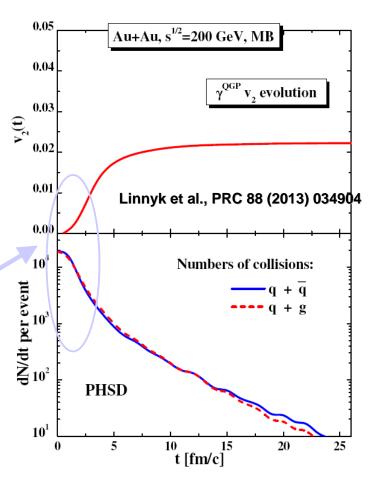
Models: chiral models, OBE, SPA ... Kapusta, Gale, Haglin (91), Rapp (07), ... ← QGP rates used in hydro!


HG rates (1) used in hydro ('TRG' model) massive Yang-Mills approach:

Turbide, Rapp, Gale, PRC 69, 014903 (2004)

PHENIX: Photon v₂ puzzle





- PHENIX (also now ALICE): strong elliptic flow of photons $v_2(\gamma^{dir}) \sim v_2(\pi)$
- □Result from a variety of models: $v_2(\gamma^{dir}) \ll v_2(\pi)$
- □ Problem: QGP radiation occurs at early times when elliptic flow is not yet developed \Rightarrow expected $v_2(\gamma^{QGP}) \rightarrow 0$

$$v_2$$
 = weighted average $v_2 = \frac{\sum_i N^i \cdot v_2^i}{\sum_i N^i}$
gives small $v_2(\gamma^{QGP})$

→ a large QGP contribution

□ NEW (QM'2014): PHENIX, ALICE experiments - large photon v₃!

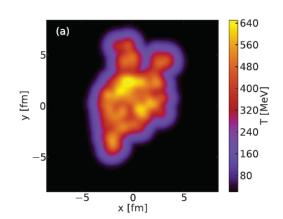
Challenge for theory – to describe spectra, v_2 , v_3 simultaneously!

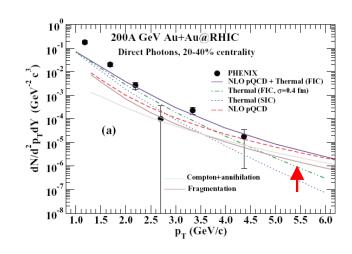
I. Direct photon flow puzzle

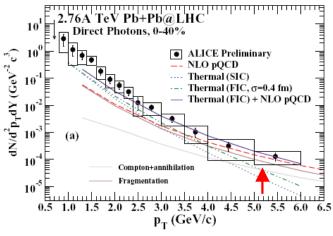
EMMI Rapid Reaction Task Force

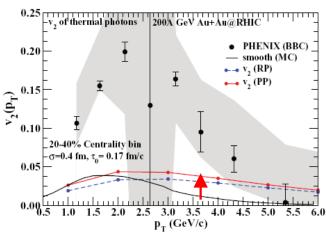
Direct-Photon Flow Puzzle

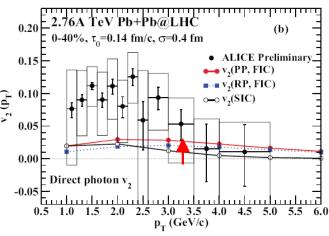
February 24-28, 2014, GSI, Darmstadt, Germany




1. Hydro: Influence of e-b-e fluctuating initial conditions

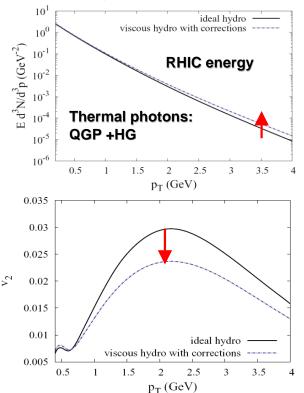

→ From smooth Glauber initial conditions to event-by-event hydro with fluctuating initial conditions


- Jyväskylä ideal hydro
- Ideal QGP and HG fluid
- Initial: ,bumpy' ebeMC Glauber
- EoS: IQCD


Talk by R. Chatterjee@QM'14, PRC 88, 034901 (2013)

→ Fluctuating initial conditions: slight increase at high p_T for yield and v₂ small effect, right direction!

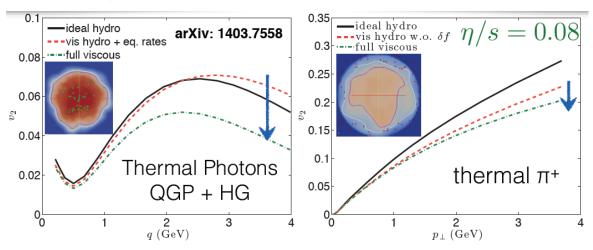
2. From ideal to viscous hydro: direct photons as a QGP viscometer?


The thermal photon emission rates with viscous corrections:

$$q\frac{dR}{d^3q}(q,T) = \Gamma_0(q,T) + \frac{\pi^{\mu\nu}}{2(e+P)} \Gamma_{\underline{\mu\nu}}(q,T),$$
 equilibrium contribution first order viscous correction

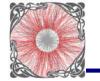
☐ (3+1)D MUSIC (McGill):

M. Dion et al., PRC84 (2011) 064901


- viscous QGP and HG fluid
- Initial: ,bumpy' ebe from IP-Glasma
- EoS: IQCD

☐ (2+1)D VISH2+1 (Ohio State):

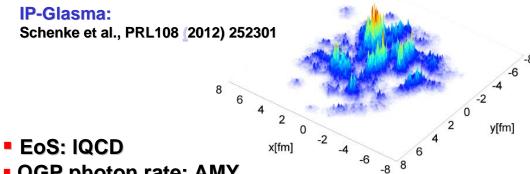
C. Shen et al., arXiv:1308.2111, arXiv:1403.7558; Talk by C. Shen @ QM2014


- viscous QGP and HG fluid
- Initial: ,bumpy' ebe from MC Glauber /KLN
- EoS: IQCD

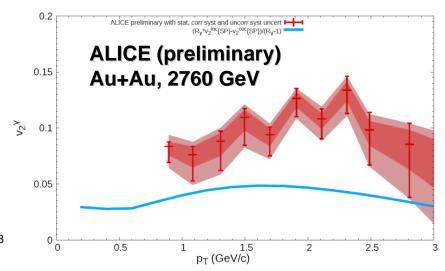
→ Effect of shear viscosity:

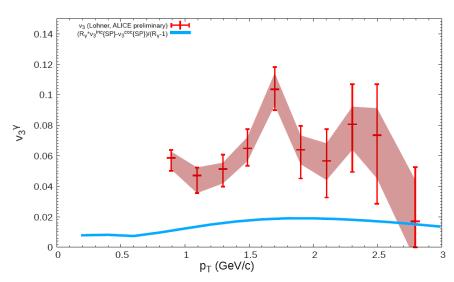
- * small enhancement of the photon yield
- * suppression of photon v₂
- * effect on v₂ for photons is stronger than for hadrons

Important!


3. Influence of Glasma initial conditions with initial flow

□ (3+1)D MUSIC - 2014:

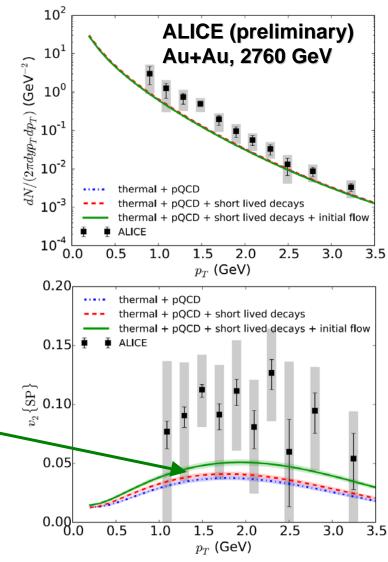

J-F. Paquet et al. (2014)


viscous QGP and HG fluid (η/s=0.22)

■ Initial: ,bumpy' ebe from IP-Glasma → generate initial flow due to fluctuations of IC

- QGP photon rate: AMY
- HG photon rate: TGR for meson gas with viscous corrections + Rapp spectral function for ρ-mesons to account for the baryonic contributions
 - MUSIC with IC-Glasma describes v_n of hadrons at RHIC & LHC, however, missing v_2 , v_3 of photons!

,Bumpy' ebe from IP-Glasma - small effect

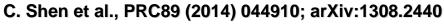

4. Hydro with pre-equilibrium flow

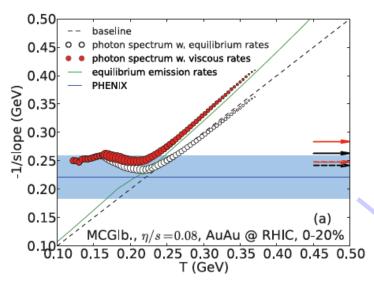
□ <u>Initial' flow:</u> rapid increase of bulk v₂ in fireball model van Hees, Gale, Rapp, PRC84 (2011) 054906

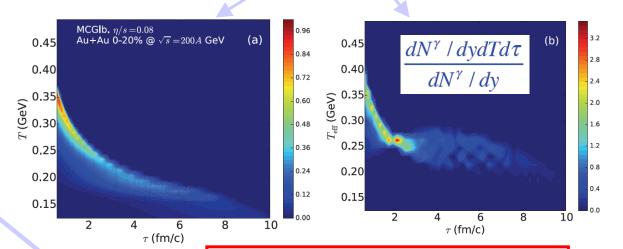
□ pre-equilibrium flow in (2+1)D VISH2+1 - 2014:

C. Shen et al., arXiv:1308.2111, arXiv:1403.7558; Talk by C. Shen @ QM'2014

- viscous QGP and HG fluid (η/s=0.18)
- Initial: ,bumpy' ebe from MC Glauber /KLN
- EoS: IQCD
- QGP photon rate: AMY
- HG photon rate: TGR for meson gas with viscous corrections
- Generation of pre-equilibrium flow: using free-streaming model to evolve the partons right after the collisions to 0.6 fm/c
- + Landau matching to switch to viscous hydro
- → quick development of momentum anisotropy with saturation near T_C
 - → Pre-equilibrium flow:
 - small effect on photon spectra
 - slight increase of v₂


Warning: results can be considered as upper limit for the pre-equilibrium flow effect!


Are thermal photons a QGP thermometer?



- ☐ (2+1)d viscous hydro VISH2+1 (Ohio)
- •Time evolution of the effective temperature
- T_{eff}= -1/slope vs. local fluid cell temperature T

 Contour plots of differential photon yield vs. time and temperature T and T_{eff}:

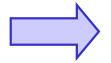
Range of photon emission	Fraction of total photon yield		
	AuAu@RHIC 0–20% centr.	PbPb@LHC 0–40% centr.	
T = 120-165 MeV	17%	15%	
T = 165-250 MeV	62%	53%	
$T > 250 \mathrm{MeV}$	21%	32%	
$\tau = 0.6 - 2.0 \text{ fm/}c$	28.5%	26%	
$\tau > 2.0 \text{ fm/}c$	71.5%	74%	

- RHIC: T_{eff}=221+19+19 MeV
- LHC: T_{eff}=304+51 MeV
- Measured Teff > ,true' T

Exp. Data:

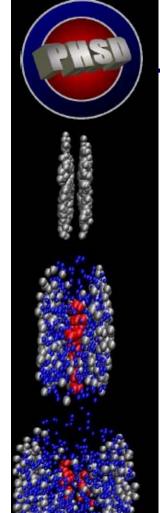
$$T_{eff} = \sqrt{\frac{1+\upsilon}{1-\upsilon}}T$$

- □ ,blue shift' due to the radial flow!
- □ only ~1/3 at LHC and
 - ~1/4 at RHIC of total photons come from hot QCD (T>250 MeV)



- □ Further improvements of hydro models ?
- Bulk viscosity
- Modeling of initial pre-equlibrium effects

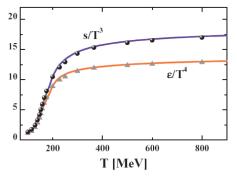
• . . .



- Non-equilibrium dynamics ?
- Missing strength related to hadronic stage?

From hydro to non-equilibrium microscopic transport models :

use PHSD as a ,laboratory' for that

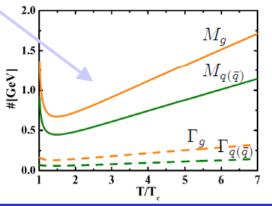


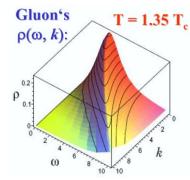
Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium transport model which provides the microscopic description of the full collision evolution

Basic ideas:

- explicit phase transition from hadrons to partons
- IQCD EoS (cross over) for the partonic phase
- explicit parton-parton interactions between quarks and gluons
- dynamical hadronization
- off-shell hadronic collision dynamics in the final reaction phase




- QGP phase is described by the Dynamical QuasiParticle Model (DQPM)
- strongly interacting quasi-particles
- massive quarks and gluons (g, q, q_{bar}) with sizeable collisional widths in self-generated mean-field potential
- Spectral functions:

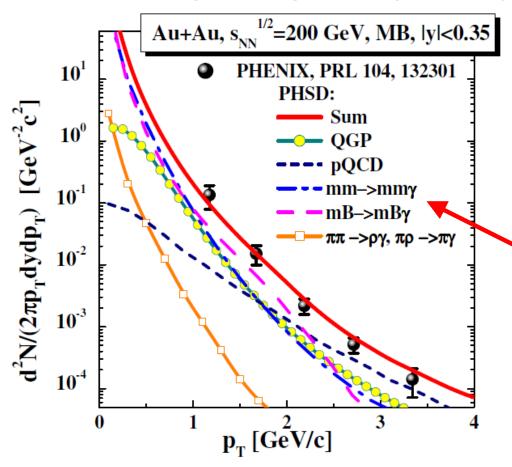
$$\rho_i(\omega,T) = \frac{4\omega\Gamma_i(T)}{\left(\omega^2 - \bar{p}^2 - M_i^2(T)\right)^2 + 4\omega^2\Gamma_i^2(T)}$$

□DQPM matches well lattice QCD

A. Peshier, W. Cassing, PRL 94 (2005) 172301;W. Cassing, NPA 791 (2007) 365: NPA 793 (2007)

☐ Transport theory: generalized off-shell transport equations based on the 1st order gradient expansion of Kadanoff-Baym equations (applicable for strongly interacting system!)

W. Cassing, E. B., PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3



PHSD: photon spectra at RHIC: QGP vs. HG?

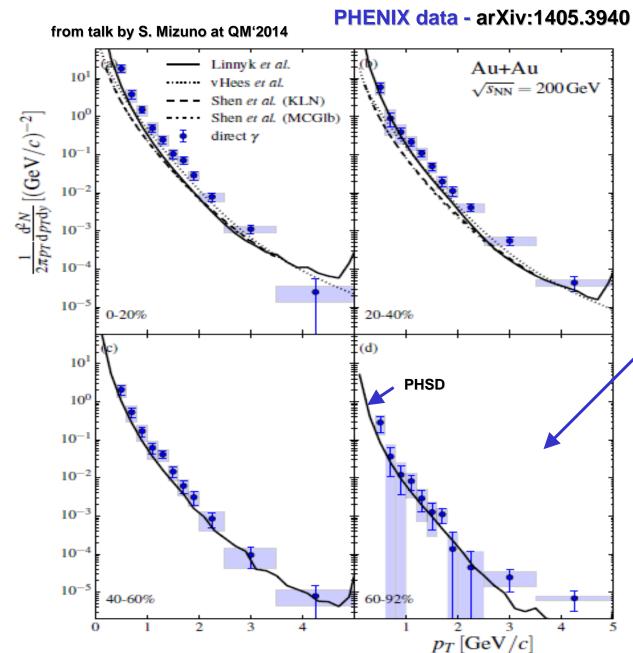
Linnyk et al., PRC88 (2013) 034904; PRC 89 (2014) 034908

Direct photon spectrum (min. bias)

The slope parameter T_{eff} (in MeV)			
PHSD		PHENIX	
QGP	hadrons	Total	[38]
260 ± 20	200 ± 20	220 ± 20	$233 \pm 14 \pm 19$

PHSD:

 QGP gives up to ~50% of direct photon yield below 2 GeV/c


! sizeable contribution from hadronic sources – meson-meson (mm) and meson-Baryon (mB) bremsstrahlung

$$m+m \rightarrow m+m+\gamma$$
,
 $m+B \rightarrow m+B+\gamma$,
 $m=\pi,\eta,\rho,\omega,K,K^*,...$
 $B=p$

!!! mm and mB bremsstrahlung channels can not be subtracted experimentally!

Photon p_T spectra at RHIC for different centralities

PHSD predictions:

O. Linnyk et al, Phys. Rev. C 89 (2014) 034908

- ☐ PHSD approximately reproduces the centrality dependence
- □ mm and mB bremsstrahlung is dominant at peripheral collisions

!!! Warning:

large uncertainties in the Bremsstrahlung channels in the present PHSD results!

Bremsstrahlung – trivial ,background'?

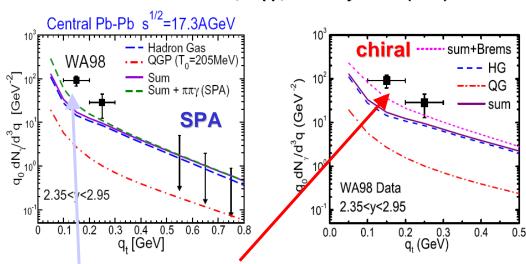
☐ Uncertainties in the Bremsstrahlung channels in the present PHSD results :

1) based on the Soft-Photon-Approximation (SPA) (factorization = strong x EM)

☐ Soft Photon Approximation (SPA):

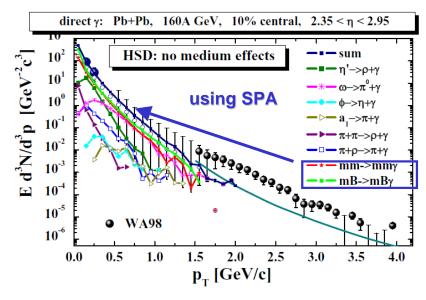
$$m_1+m_2 \rightarrow m_1+m_2+\gamma$$

C. Gale, J. Kapusta, Phys. Rev. C 35 (1987) 2107


$$q_0 \frac{d^3 \sigma^{\gamma}}{d^3 q} = \frac{\alpha}{4\pi} \frac{\bar{\sigma}(s)}{q_0^2}$$

$$\bar{\sigma}(s) = \frac{s - (M_1 + M_2)^2}{2M_1^2} \underline{\sigma}(s),$$

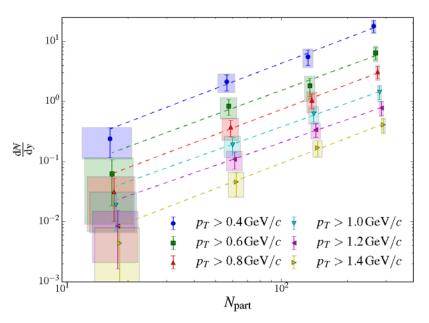
2) little experimental constraint on many m+m and m+B elastic cross sections


☐ Bremsstrahlung: seen at SPS - WA98

Firebal model: Liu, Rapp, Nucl. Phys. A 96 (2007) 101

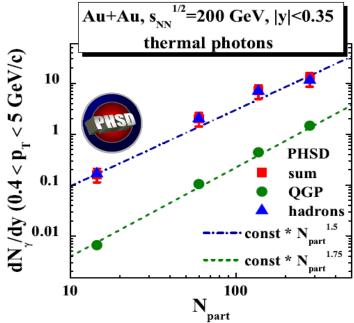
• effective chiral model for $\pi\pi\to\pi\pi\gamma$, $\pi K\to\pi K\gamma$ bremsstrahlung gives larger contribution than SPA

→ Bremsstrahlung has been an important source of soft photons at SPS!


Centrality dependence of the ,thermal' photon yield

O. Linnyk et al, Phys. Rev. C 89 (2014) 034908

PHENIX (arXiv:1405.3940):


scaling of thermal photon yield vs centrality: $dN/dy \sim N_{part}^{\alpha}$ with $\alpha \sim 1.48 \pm 0.08$

('Thermal' photon yield = direct photons - pQCD)

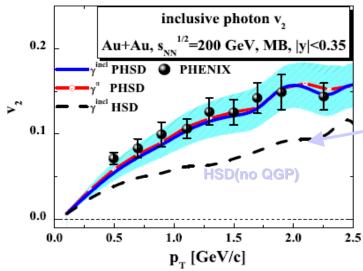
PHSD predictions:

- ☐ Hadronic channels scale as ~ N_{part} 1.5
- □ Partonic channels scale as ~N_{part}^{1.75}

- \square PHSD: scaling of the thermal photon yield with N_{part}^{α} with $\alpha \sim 1.5$
- □ similar results from viscous hydro: (2+1)d VISH2+1: $\alpha(HG) \sim 1.46$, $\alpha(QGP) \sim 2$, $\alpha(total) \sim 1.7$

→ What do we learn?

Indications for a dominant hadronic origin of thermal photon production?!



Are the direct photons a barometer of the QGP?

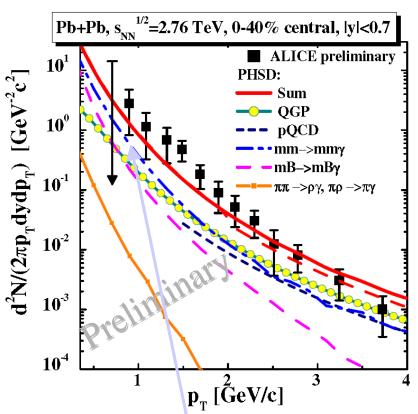
 \square Do we see the QGP pressure in $v_2(\gamma)$ if the photon productions is dominated by hadronic sources?

PHSD: Linnyk et al., PRC88 (2013) 034904; PRC 89 (2014) 034908

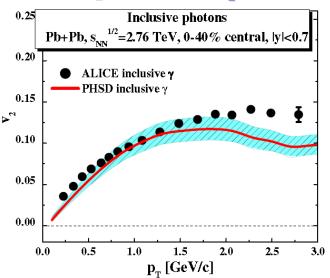
direct photon v, in PHSD Au+Au, $s_{NN}^{1/2}=200$ GeV, MB, |y|<0.350.3 • , O PHENIX $v_2^{\text{dir}} = \sum_i v_2^i N_i(\gamma) / N_{\text{tot}}(\gamma)$ 0.2 -PHSD 0.1 0.0 2.5 1.0 1.5 0.0 0.5 2.0 $\mathbf{p}_{\mathrm{T}}\left[\mathrm{GeV/c}\right]$

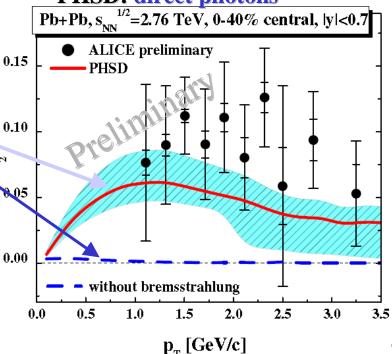
- 1) $v_2(\gamma^{incl}) = v_2(\pi^0)$ inclusive photons mainly come from π^0 decays
- HSD (without QGP) underestimates v₂ of hadrons and inclusive photons by a factor of 2, wheras the PHSD model with QGP is consistent with exp. data
- \rightarrow The QGP causes the strong elliptic flow of photons indirectly, by enhancing the v_2 of final hadrons due to the partonic interactions

Direct photons (inclusive(=total) – decay):


- 2) $v_2(\gamma^{dir})$ of direct photons in PHSD underestimates the PHENIX data :
- v₂(γ^{QGP}) is very small, but QGP contribution is up to 50% of total yield → lowering flow
- \rightarrow PHSD: $v_2(\gamma^{dir})$ comes from mm and mB bremsstrahlung!

Photons from PHSD at LHC


PHSD- preliminary: Olena Linnyk


- ☐ Is the considerable elliptic flow of direct photons at the LHC also of hadronic origin as for RHIC?!
- ☐ The photon elliptic flow at LHC is lower than at RHIC due to a larger relative QGP contribution / longer QGP phase.

→ LHC (similar to RHIC): hadronic photons dominate spectra and v₂

PHSD: v_2 of inclusive photons

PHSD: direct photons

Towards the solution of the v₂ puzzle

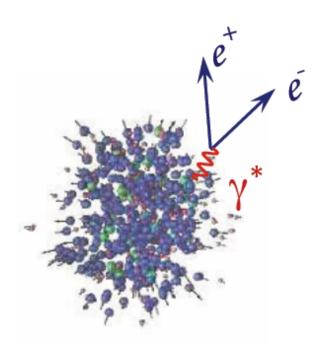
Is hadronic bremsstrahlung a ,solution'?

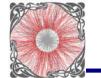
Other scenarios:

- Early-time magnetic field effects ?
 (Basar, Kharzeev, Skokov, PRL109 (2012) 202303; Basar, Kharzeev, Shuryak, arXiv:1402.2286)
- Glasma effects ?
 (L. McLerran, B. Schenke, arXiv: 1403.7462)
- Pseudo-Critical Enhancement of thermal photons near T_C ? (H. van Hees, M. He, R. Rapp, arXiv:1404.2846) cf. talk by R. Rapp - "Electromagnetic probes: 2-2" (Monday)
- non-perturbative effects?
 semi-QGP cf. talk by S. Lin "Electromagnetic probes: 2-2" (Monday)

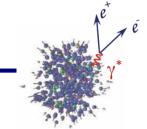
????

... shining in the darkness

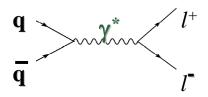

Some messages from the 'photon adventure':

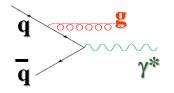

- The photons provide a critical test for the theoretical models: models constructed to reproduce the ,hadronic world' fail to explain the photon experimental data!
- ☐ The details of the hydro models (fluctuating initial conditions, viscousity, pre-equilibrium flow) have small impact on the photon observables
- ☐ The role of mm and mB bremsstrahlung has been underestimated ?!
- □ The importance of initial phases of the reaction: large photon v₂ requires the development of pre-equilibrium / initial flow ?!

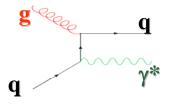
Photons – one of the most sensitive probes for the dynamics of HIC!

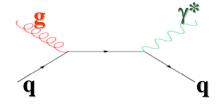


Dileptons: from SPS to LHC

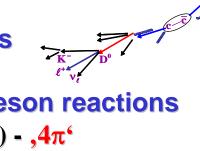


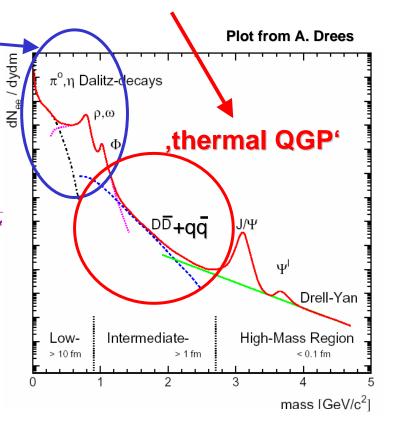



Dilepton sources



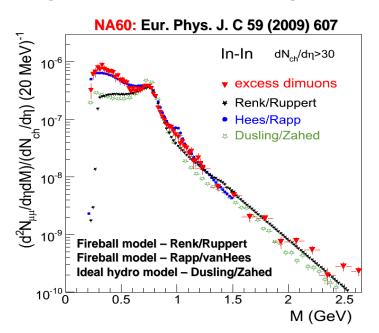
from the QGP via partonic (q,qbar, g) interactions:

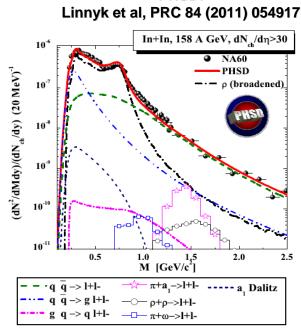


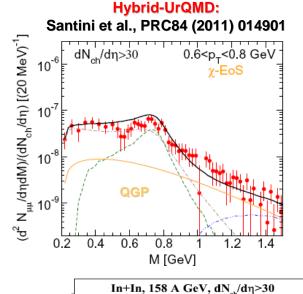


- •direct decay of vector mesons $(\rho,\omega,\phi,J/\Psi,\Psi')$
- **Dalitz decay of mesons** and baryons $(\pi^0, \eta, \Delta,...)$
- correlated D+Dbar pairs

•radiation from multi-meson reactions $(\pi+\pi, \pi+\rho, \pi+\omega, \rho+\rho, \pi+a_1)$ - ,4 π

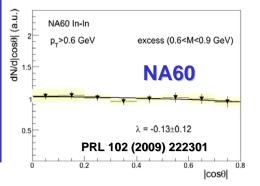

! Advantage of dileptons:


additional "degree of freedom" (M) allows to disentangle various sources


Lessons from SPS: NA60

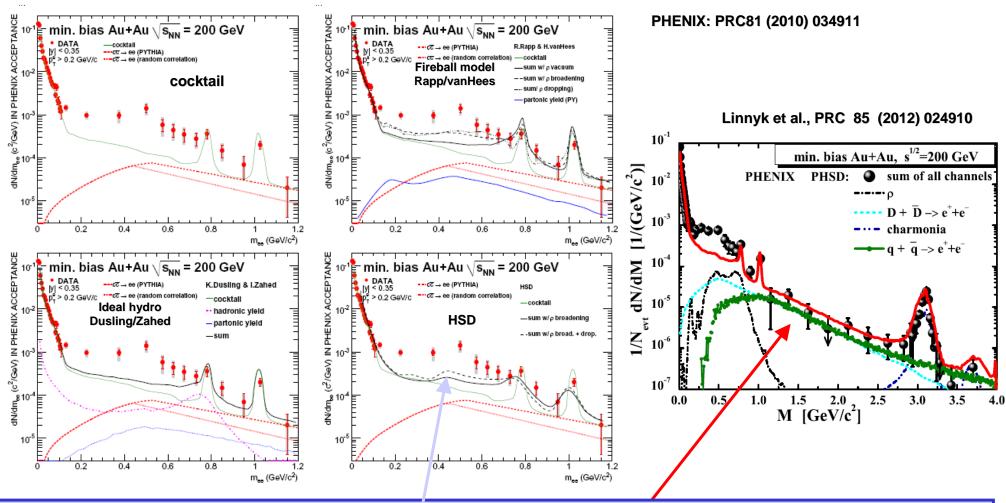
■ Dilepton invariant mass spectra:

PHSD:


250 200 150 PHSD 150 0.0 0.5 1.0 1.5 2.0 2.5 M [GeV/c²]

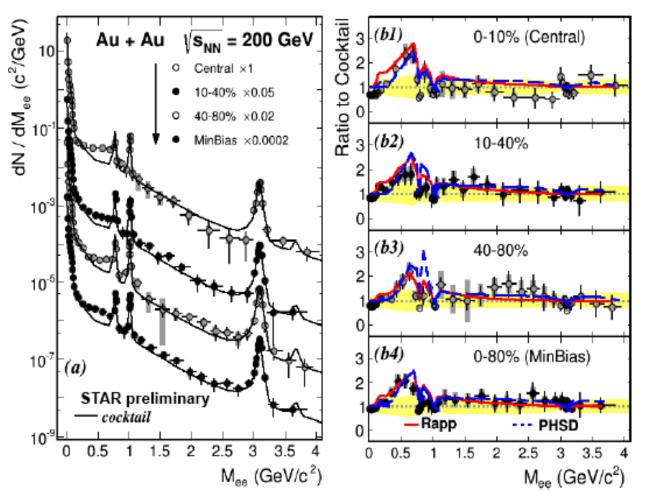
☐ Inverse slope parameter T_{eff}:

spectrum from QGP is softer than from hadronic phase since the QGP emission occurs dominantly before the collective radial flow has developed

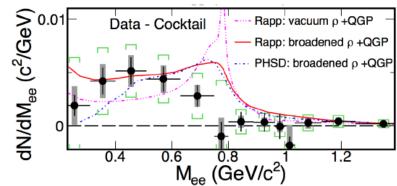

Message: (based on NA60 data and CERES data)

- 1) Low mass spectra evidence for the in-medium broadening of ρ-mesons
- 2) Intermediate mass spectra above 1 GeV dominated by partonic radiation
- 3) The rise and fall of Teff evidence for the thermal QGP radiation
- 4) Isotropic angular distribution indication for a thermal origin of dimuons

Dileptons at RHIC: PHENIX


Message:

- Models provide a good description of pp data and peripheral Au+Au data, however, fail in describing the excess in central collisions even with in-medium scenarios for the vector meson spectral function
- Intermediate mass spectra dominant QGP contribution


Dileptons at RHIC: STAR data vs model predictions

Centrality dependence of dilepton yield

(Talk by P. Huck at QM'2014)

Excess in low mass region, min. bias

Models:

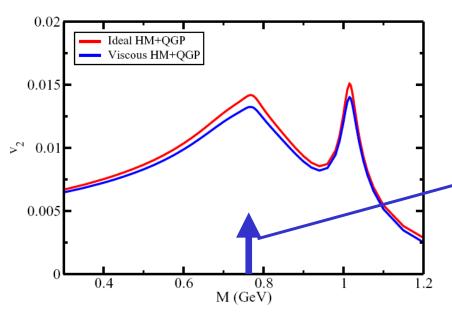
- Fireball model R. Rapp
- PHSD

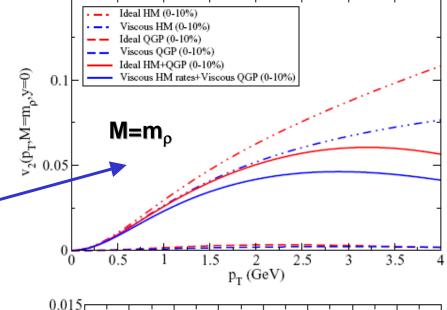
Low masses:

collisional broadening of $\boldsymbol{\rho}$ Intermediate masses:

QGP dominant

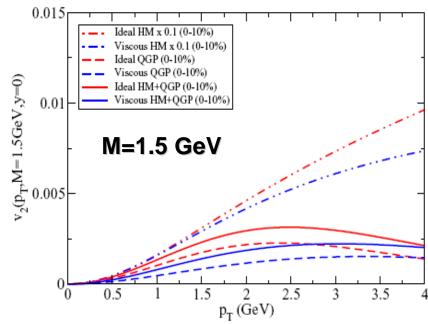
Message: STAR data are described by models within a **collisional broadening** scenario for the vector meson spectral function + **QGP**




Perspectives with dileptons: v_n

Talk by Vujanovic, QM'2014

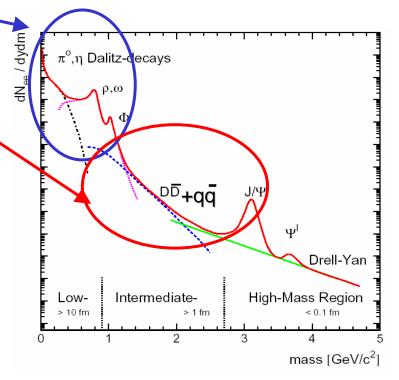
Vujanovic, Young, Schenke, Rapp, Jeon, Gale, PRC 89 (2014) 034904



v_2 (similar for v_3):

- \square sensitive to the EoS and η /s
- ☐ sensitive to the sources

Dileptons: advantages compared to photons – extra degree of freedom M allows to disentangle the sources!


Messages from dilepton data

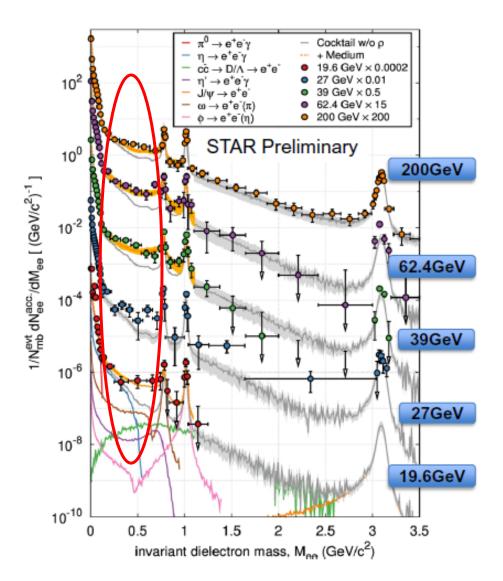
- **☐** Low dilepton masses:
- Dilepton spectra show sizeable changes due to the in-medium effects
- modification of the properties of vector mesons (as collisional broadening) - which are observed experimentally
- In-medium effects can be observed at all energies from SIS to LHC
- Intermediate dilepton masses:
- The QGP (qbar-q) dominates for M>1.2 GeV
- Fraction of QGP grows with increasing energy; at the LHC it is dominant

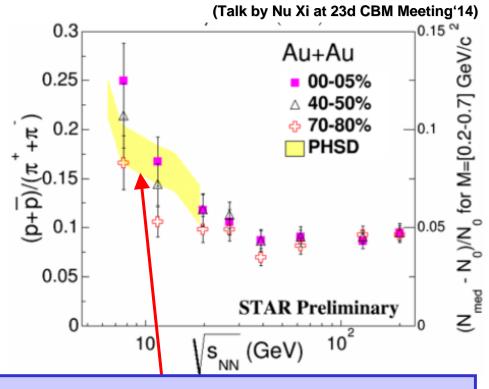
Outlook:

* experimental energy and system (pp, pA, AA) scan (talk by Nu Xu, Lijuan Ruan)

* experimental measurements of dilepton's higher flow harmonics v_n

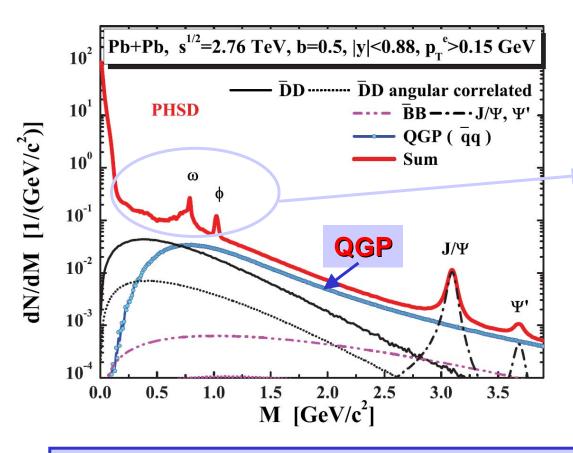
Thank you!



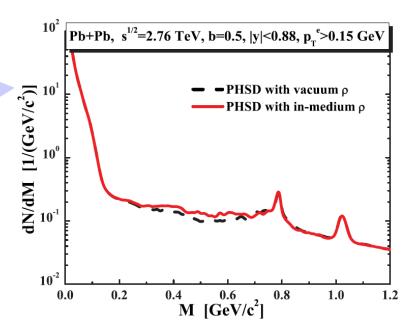

Backup:

Dileptons from RHIC BES: STAR

(Talk by Nu Xu at QM'2014)


Message:

- **BES-STAR** data show a constant low mass excess (scaled with $N(\pi^0)$) within the measured energy range
- PHSD model: excess increasing with decreasing energy due to a longer ρ-propagation in the high baryon density phase
- → Good perspectives for future experiments CBM(FAIR) / MPD(NICA)



Dileptons at LHC

O. Linnyk, W. Cassing, J. Manninen, E.B., P.B. Gossiaux, J. Aichelin, T. Song, C.-M. Ko, Phys.Rev. C87 (2013) 014905; arXiv:1208.1279

Message:

- Iow masses hadronic sources: in-medium effects for ρ mesons are small
- intermediate masses: QGP + D/Dbar
 - charm 'background' is smaller than thermal QGP yield
 - QGP(qbar-q) dominates at M>1.2 GeV → clean signal of QGP at LHC!