

# Correlations and fluctuations in high-energy nuclear collisions

-- a "flow" centric review

#### Jiangyong Jia

## Ridge in small systemsCollective phenomena in A+A



Refer to Alex Shmah for other topics

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

5/19-5/24, 2014



#### The PHENIX d+Au ridge



#### The PHENIX "hidden" d+Au ridge



#### Be careful about Per-trigger yield...



### The tale of three ridges....



- Manifestation of QCD in different high density systems
- But is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?
- What is its detailed p<sub>T</sub>, η, and centrality dependence? How these dependences compare between different systems?

## pPb ridge properties summarized by harmonics



(1, 2, 3, 4) and (5) has been measured in p

- $v_1, v_2, v_3, v_4$  and  $v_5$ , made possible with recoil subtraction
  - v<sub>2</sub>, v<sub>3</sub> out to 10 GeV, remain 3-5%, small jet modifications?
  - $v_n$  decrease with n for n=2-5
  - Significant  $v_1$  comparable with  $v_3$  at 4 GeV.

#### S. Radhakrishnan

## pPb ridge properties summarized by harmonics



- $v_1, v_2, v_3, v_4$  and  $v_5$ , made possible with recoil subtraction
  - v<sub>2</sub>, v<sub>3</sub> out to 10 GeV, remain 3-5%, small jet modifications?
  - $v_n$  decrease with n for n=2-5
  - Significant  $v_1$  comparable with  $v_3$  at 4 GeV.

#### S. Radhakrishnan

#### Is there global correlation in p+Pb system?



Multi-particle and all particle correlation signal remain remarkably large in high-multiplicity events!! Collective behavior!

Q. Wang

#### Comparison p+Pb with Pb+Pb

#### • Collectivity increase and decrease with system size.



Where and how the hydro-picture breaks down? What is the correct effective theory? CGC+transport?

#### Comparison of p+Pb with Pb+Pb

• Why extrapolation of hydro prediction works so well? e.g. conformal scaling



0.15

0.05

• From the confomal analysis





p+Pb 220≤N<sup>rec</sup><260

ATLAS Preliminan

Pb+Pb Centrality 55-60%, v<sub>2</sub>(p<sub>1</sub>/1.25)×0.66-

#### Comparison of p+Pb with Pb+Pb

• Why extrapolation of hydro prediction works so well? e.g. conformal scaling



**Detailed comparison** 

# A few observations/comments about flow in A+A collisions

## PID v<sub>2</sub> at LHC

- Compare to RHIC results,
  - Stronger radial flow and importance of hadronic rescattering.
  - Poorer NCQ scaling.
- \$\overline\$ flow like a baryon (central) and meson (mid-central)
  - Combination of mass and crosssection effects?





#### A. Dobrin & Jan



#### Cu+Au and U+U



- $Cu+Au v_1$  from average dipolar geometry
- U+U: see some sensitivity to the initial state geometry.

Each collision system introduces its own uncertainty in geometry!

#### Intra-event flow fluctuation and factorization

Flow angle and amplitude fluctuates in  $p_T$  (and  $\eta$ ) Ollitrault QM2012

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) \mathrm{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))] 
angle}{\langle v_n(p_{T1})v_n(p_{T2}) 
angle}$$

- Breaking is largest for v<sub>2</sub> in ultra-central Pb+Pb collisions
  - Much smaller for other harmonics and in other centralities (ALICE/ATLAS/CMS)
- Breaking of factorization p+Pb at a few % level D. Devetak also Y. Zhou



#### **Ultra-central collisions**



The strange  $v_2(p_T)$  shape!

- Linear response dominates:  $v_n \propto \varepsilon_n$  for all n
- Models have difficulty explain  $v_2 \approx v_3$ 
  - Importance of nucleon-nucleon correlation and bulk viscosity? G.Denicol

#### **Ultra-central collisions**



The strange  $v_2(p_T)$  shape!

- Linear response dominates:  $v_n \propto \varepsilon_n$  for all n
- Models have difficulty explain  $v_2 \approx v_3$ 
  - Importance of nucleon-nucleon correlation and bulk viscosity? G.Denicol

#### **Event-by-Event fluctuations**

#### Geometry and harmonic flow



• How  $(\varepsilon_n, \Phi_n^*)$  are transferred to  $(v_n, \Phi_n)$ ?

• What is the nature of final state (non-linear) dynamics?

#### Experimental observables

#### Many little bangs



$$p(v_n, v_m, ..., \Phi_n, \Phi_m, ...) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m ... d\Phi_n d\Phi_m ...}$$

$$\frac{dN_{\text{evts}}}{d\Phi_l d\Phi_l d\Phi_l} \propto \sum_{a_{c_1, c_2, ..., c_l}}^{\infty} \cos(c_1 \Phi_1 + c_2 \Phi_{2...} + c_l \Phi_l)$$

Angular component captured by cosines

$$\frac{dN_{\text{evts}}}{d\Phi_1 d\Phi_2 \dots d\Phi_l} \propto \sum_{c_n = -\infty}^{\infty} a_{c_1, c_2, \dots, c_l} \cos(c_1 \Phi_1 + c_2 \Phi_2 \dots + c_l \Phi_l)$$
$$a_{c_1, c_2, \dots, c_l} = \langle \cos(c_1 \Phi_1 + c_2 \Phi_2 + \dots + c_l \Phi_l) \rangle$$
$$\langle \cos(c_1 \Phi_1 + 2c_2 \Phi_2 \dots + lc_l \Phi_l) \rangle, c_1 + 2c_2 \dots + lc_l = 0.$$

1104.4740, 1209.2323, 1203.5095 ,1312.3572

|                         | Probability distribution | Cumulants                                                                              |
|-------------------------|--------------------------|----------------------------------------------------------------------------------------|
| Flow amplitudes         | $p(v_n), p(v_n, v_m)$    | $v_n\{2k\}, \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$ |
| Event-plane correlation | $p(\Phi_n,\Phi_m,)$      | $\langle ec{v}_n ec{v}_m  angle$ or                                                    |
|                         |                          | $\langle \cos(c_1 \Phi_1 + + l c_l \Phi_l)  angle$                                     |

### v<sub>n</sub>{2k} in Pb+Pb collisions



- Provide information about the underlying  $p(v_n)$  distribution
- $v_2{4} \sim v_2{6} \sim v_2{8} \Rightarrow$  Gaussian fluctuation around mean  $v_2^{RP}$ :

$$p(\vec{v}_n) = \frac{1}{2\pi\delta_{v_n}^2} e^{-\left(\vec{v}_n - \vec{v}_n^{\mathrm{RP}}\right)^2 / \left(2\delta_{v_n}^2\right)}$$

• Non-zero  $v_3$ {4} (ALICE) and also  $v_4$ {4} (ATLAS)

#### Cumulants from traditional method and from $p(v_2)$



#### Cumulants from traditional method and from $p(v_2)$



• Measuring  $p(v_2)$  is equivalent to cumulants, more intuitive and simpler systematics

• Non-Bessel Gaussian is reflected by a 2% change beyond 4<sup>th</sup> order cumulants

#### How $(\varepsilon_n, \Phi_n^*)$ are transferred to $(v_n, \Phi_n)$ ?

Flow response is linear for  $v_2$  and  $v_3$ :  $v_n \propto \varepsilon_n$  and  $\Phi_n \approx \Phi_n^*$  i.e.  $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \quad v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$ 

#### How $(\varepsilon_n, \Phi_n^*)$ are transferred to $(v_n, \Phi_n)$ ?

- Flow response is linear for  $v_2$  and  $v_3$ :  $v_n \propto \varepsilon_n$  and  $\Phi_n \approx \Phi_n^*$  i.e.  $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \quad v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$
- Higher-order flow arises from EP correlations., e.g. :



#### More info by selecting on event-shape



arXiv:1208.4563 arxiv:1311.7091

• Select events with certain  $v_2^{obs}$  in Forward Rapidity:

#### More info by selecting on event-shape



• Fix centrality, then select events with certain  $v_2^{obs}$  in Forward rapidity:

ATLAS: measure v<sub>n</sub> via two-particle correlations in |η|< 2.5 Fix system size and change ellipticity!!

#### More info by selecting on event-shape





"Boomerang" reflects stronger viscous damping at higher p<sub>T</sub> and peripheral "Boomerang" reflects reflects different centrality dependence, which is also sensitive to the viscosity effect.

#### $v_n$ - $v_2$ correlations: within fixed centrality

Fix system size and vary the ellipticity!

Probe  $p(v_n, v_2)$ 



Linear correlation for forward v<sub>2</sub>-selected bin→viscous damping controlled by system size, not shape

#### $v_n$ - $v_2$ correlations: within fixed centrality

• Fix system size and vary the ellipticity!

- Probe  $p(v_n, v_2)$
- Overlay  $\varepsilon_3 \varepsilon_2$  and  $\varepsilon_4 \varepsilon_2$  correlations, rescaled



Linear correlation for forward  $v_2$ -selected bin  $\rightarrow$  viscous damping controlled by system size, not shape

Clear anti-correlation,

quadratic rise from nonlinear coupling to  $v_2^2$ 

#### $v_n$ - $v_2$ correlations: within fixed centrality

• Fix system size and vary the ellipticity!

- Probe  $p(v_n, v_2)$
- Overlay  $\varepsilon_3 \varepsilon_2$  and  $\varepsilon_4 \varepsilon_2$  correlations, rescaled



Linear correlation for forward  $v_2$ -selected bin  $\rightarrow$  viscous damping controlled by system size, not shape

Clear anti-correlation, mostly initial geometry effect!!

quadratic rise from nonlinear coupling to v<sub>2</sub><sup>2</sup> initial geometry do not work!!

Initial geometry describe  $v_3$ - $v_2$  but fails  $v_4$ - $v_2$  correlation S. Mohapatra

## linear ( $\epsilon_4$ ) and non-linear ( $v_2^2$ ) component of $v_4^{33}$

■ V<sub>4</sub>-V<sub>2</sub> correlation for fixed centrality bin  $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow$  Fit by  $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ 



• Fit  $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$  to separate linear ( $\varepsilon_4$ ) and non-linear ( $v_2^2$ ) component

#### 34 linear ( $\epsilon_4$ ) and non-linear ( $v_2^2$ ) component of $v_4$

 $V_4 - V_2$  correlation for fixed centrality bin  $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow$  Fit by  $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ 



Linear-component provide independent constraints on viscosity Fit  $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$  to separate linear ( $\epsilon_4$ ) and non-linear ( $v_2^2$ ) component



See details at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-022/

### Event-shape (v<sub>2</sub>) selected HBT



Future prospects: my humble opinion

## (I): Precision event-shape selection

Different collision system e.g. He<sup>3</sup>+Au, June 16<sup>th</sup>!



Intrinsic trangularity

P. ROMATSCHKE

## (I): Precision event-shape selection

■ Different collision system e.g. He<sup>3</sup>+Au, June 16<sup>th</sup>! P. ROMATSCHKE Nagle, et al (MM), arXiv:1312.4565 t = 3.00 fm/d t = 5.00 fm/c t = 1.00 fm/ct = 1.75 fm/c 0.32 0.3 0.28 coordinate [fm] 0.26 0.24 Intrinsic trangularity 0.22 x coordinate [fm] x coordinate [fm] x coordinate [fm] x coordinate [fm] Event-shape selections on  $v_2$  and/or  $v_3 \rightarrow$  Fix size, change  $\varepsilon_2$  and  $\varepsilon_3$ Schukraft, Timmins, and Voloshin, arXiv:1208.4563 •  $v_n$ , HBT,  $R_{AA}$ , CME etc.. **Increasing ε**<sub>2</sub> Huo, Mohapatra, JJ arxiv:1311.7091 €,€(0%,2%) €,€(40%,42%) ವ€(60%.62%) €,€(98%,100%) €.€(80%.82%) 🛨 Centrality 40-45% 🚟 🗤 110 -5 110 -5 5 -5 5 0 0 5 1(0 -5 Increasing ε<sub>3</sub> €,€(0%,2%) 5,€(20%,22%) 5,€(40%,42%) €,€(60%,62%) €,€(80%,82%) €,€(98%,100%)

5

1(0

-5

0

5

110

-5

0

5

110

-5

0

5

10

-5

0

5

110

-5

0

## (II) : understand jet-medium interaction

#### • How (mini)-jet are thermalized in medium?

- Difficult due to dominance of collective flow
  - Until 2010, triangular flow was interpreted as "Mach-cone"
- Event-shape selection technique can help!
  - Require events to have small  $v_n$ , less flow subtraction.



## (II) : understand jet-medium interaction

#### • How (mini)-jet are thermalized in medium

- Difficult due to dominance of collective flow
  - Circa 2005, triangular flow was interpreted as "Mach-cone"
- Event-shape selection technique can help!
  - Require events to have small  $v_n$ , less flow subtraction.
- $\eta \times \phi$  space are dominated by fake-jets or "hydro-jets"



Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition



#### 40

## (II) : understand jet-medium interaction

#### • How (mini)-jet are thermalized in medium

- Difficult due to dominance of collective flow
  - Circa 2005, triangular flow was interpreted as "Mach-cone"
- Event-shape selection technique can help!
  - Require events to have small  $v_n$ , less flow subtraction.
- η × φ space are dominated by fake-jets or "hydro-jets"
   They can be found by jet-reco algorithm (vetoing good jets) Then analysis spectrum or study substructure?





## (III) : flow longitudinal dynamics



- Shape of participants in two nuclei not the same due to fluctuation  $\varepsilon_n^{\rm F}, \Phi_n^{\rm *F} \neq \varepsilon_n^{\rm B}, \Phi_n^{\rm *B}$
- Particles are produced by independent fragmentation of wounded nucleons, emission function  $f(\eta)$  not symmetric in  $\eta \rightarrow$  Wounded nucleon model

## (III) : flow longitudinal dynamics



• Eccentricity vector interpolates between  $\vec{\epsilon}_n^{\rm F}$  and  $\vec{\epsilon}_n^{\rm B}$ 

$$\vec{\epsilon}_n^{\text{tot}}(\eta) \approx \alpha(\eta)\vec{\epsilon}_n^{\text{F}} + (1 - \alpha(\eta))\vec{\epsilon}_n^{\text{B}} \equiv \epsilon_n^{\text{tot}}(\eta)e^{in\Phi_n^{\text{*tot}}(\eta)}$$

Asymmetry:
$$\mathcal{E}_n^{\mathrm{F}} \neq \mathcal{E}_n^{\mathrm{B}}$$
Twist: $\Phi_n^{*\mathrm{F}} \neq \Phi_n^{*\mathrm{B}}$ 

#### $\alpha(\eta)$ determined by $f(\eta)$

- Hence  $\vec{v}_n(\eta) \approx c_n(\eta) \left[ \alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$  for n=2,3
  - Picture verified in AMPT simulations, magnitude estimated 1403.6077



Require 
$$\Phi_n^{*F} > \Phi_n^{*B}$$
 see  $\Phi_2(+\eta) > \Phi_2(-\eta)$ 



## Initial state twist and asymmetry survives collective expansion

Play a bigger role for Cu+Au, U+U and p+A system





## Elliptic flow of identified particles

Identified  $K_{\text{S}}$  and  $\Lambda$  & charged hadrons

 $v_2$  (and  $v_3$ ) from 2-particle correlations

show mass ordering In pPb and PbPb (stronger in pPb)

and ≈ quark scaling (better in pPb)

Talk by Sharma Poster by Chen PAS-HIN-14-002



#### $\sqrt{s}$ dependence of final spatial eccentricity



- Hydro predicts stronger decrease,
  - UrQMD works but it probably under-predicts the flow.

#### Intra-event flow fluctuation and factorization

Flow angle and amplitude fluctuates in  $p_T$  (and  $\eta$ ) Ollitrault QM2012

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) \mathrm{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))] 
angle}{\langle v_n(p_{T1})v_n(p_{T2}) 
angle}$$

- Breaking is largest for v<sub>2</sub> in ultra-central Pb+Pb collisions
- Much smaller for other harmonics and in other centralities
- Very small (2-3%) breaking for high-multiplicity pPb collisions
  - Be aware of non-flow bias from di-jets, recoil subtraction is necessary in



#### Intra-event flow fluctuation and factorization

Flow angle and amplitude fluctuates in  $p_T$  (and  $\eta$ ) Ollitrault QM2012

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) \mathrm{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))] 
angle}{\langle v_n(p_{T1})v_n(p_{T2}) 
angle}$$

- Breaking is largest for v<sub>2</sub> in ultra-central Pb+Pb collisions
- Much smaller for other harmonics and in other centralities
- Very small (2-3%) breaking for high-multiplicity pPb collisions
  - Be aware of non-flow bias from di-jets, recoil subtraction is necessary in order to compare with theory
     *Kozlov et.al.:arXiv:1405.3976*



#### Beam Energy scan: search for CEP



• Looking for non-monotonic change with  $\sqrt{s}$ 

#### Looking for non-monotonic change with $\sqrt{s}$



## Looking for non-monotonic change with $\sqrt{s}$

54

#### ■ Shallow dips observed at ~ 10-20 GeV for several observables



More refined measurements with BES II and theory input!!