Collective dynamics in relativistic nuclear collisions

Harri Niemi

University of Jyväskylä, Department of Physics

23.5.2014
Limits for the viscosity of strongly interacting matter:

- No direct measurements \rightarrow extracting transport coefficients requires model for the spacetime evolution of the matter

Fluid dynamics

- Transport coefficients direct input to the model
- Easy to include transition from QGP to hadronic matter (EoS)
- Need: small gradients and close to local thermal equilibrium
Conservation laws

\[\partial_\mu T^{\mu \nu} = 0 \]

\[T^{\mu \nu} = e u^\mu u^\nu - (p + \Pi) \Delta^{\mu \nu} + \pi^{\mu \nu} \]

Israel-Stewart equations for dissipative parts of \(T^{\mu \nu} \)

shear-stress:

\[\tau_\pi \frac{d}{d\tau} \pi^{\langle \mu \nu \rangle} + \pi^{\mu \nu} = 2\eta \nabla^{\langle \mu u^\nu \rangle} + \cdots \]

bulk pressure:

\[\tau_\Pi \frac{d}{d\tau} \Pi + \Pi = -\zeta \nabla^{\mu} u^\mu + \cdots \]

Microscopic properties integrated into the coefficients:

\[\eta(T, \{\mu_i\}) = \text{shear viscosity (resistance to deformations)} \]

\[\zeta(T, \{\mu_i\}) = \text{bulk viscosity (resistance to volume changes)} \]
- Model for initial conditions (initial T^μ_ν)
- \longrightarrow Spacetime evolution of T^μ_ν from fluid dynamics
- \longrightarrow Convert to observable particle spectra
Azimuthal deformations characterized by Fourier coefficients:

\[v_1 = \text{directed flow}, \ v_2 = \text{elliptic flow}, \ v_3 = \text{triangular flow} \]

\[
\frac{dN}{dydp_T^2d\phi} = \frac{dN}{dydp_T^2} \left[1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos(\phi - \psi_n) \right]
\]

Event-plane angle (direction of the deformation):

\[\psi_n = \frac{1}{n} \arctan \left(\frac{\langle p_T \sin n\phi \rangle}{\langle p_T \cos n\phi \rangle} \right) \]

- \(v_n(p_T), \psi_n(p_T), dN/dy, \ldots \) characterize single event

Ensemble of events: Full characterization

- Averages: \(\langle v_n \rangle, \langle \psi_n \rangle, \ldots \)
- Probability distributions: \(\mathcal{P}(v_n), \mathcal{P}(\psi_n), \ldots \)
- Correlations: \(\langle v_n, v_m \rangle, \langle \psi_n, \psi_m \rangle, \ldots \)
Azimuthal deform. of initial density characterized by eccentricities:

\[\epsilon_{m,n} = -\frac{\int \mathrm{d}x\mathrm{d}y \ r^m \cos [n(\phi - \Psi_{m,n})] \varepsilon(x, y, \tau_0)}{\int \mathrm{d}x\mathrm{d}y \ r^m \varepsilon(x, y, \tau_0)} \]

Usually \(\epsilon_2 = \epsilon_{2,2}, \epsilon_3 = \epsilon_{3,2}, \ldots \)

\[\Psi_{m,n} = \frac{1}{n} \arctan \frac{\int \mathrm{d}x\mathrm{d}y \ r^m \sin (n\phi) \varepsilon(x, y, \tau_0)}{\int \mathrm{d}x\mathrm{d}y \ r^m \cos (n\phi) \varepsilon(x, y, \tau_0)} + \frac{\pi}{n} \]

\(\Psi_{m,n} = \) participant plane angle (direction of deformation)

- \(\epsilon_{m,n}, \Psi_{m,n} \) characterize single event (initial energy density)

Ensemble of events (initial conditions): Full characterization

- Averages: \(\langle \epsilon_{m,n} \rangle, \langle \Psi_{m,n} \rangle, \ldots \)
- Probability distributions: \(\mathcal{P}(\epsilon_{m,n}), \mathcal{P}(\Psi_{m,n}) \)
- Correlations: \(\langle \epsilon_{m,n}, \epsilon_{m',n'} \rangle, \langle \Psi_{m,n}, \Psi_{m',n'} \rangle, \ldots \)
Fluid dynamics converts initial eccentricities to non-zero flow coefficients: $\varepsilon_n \rightarrow v_n$

Ensemble of events (initial conditions): Full characterization

- Averages: $\langle e_{m,n} \rangle, \langle \psi_{m,n} \rangle, \ldots$
- Probability distributions: $\mathcal{P}(e_{m,n}), \mathcal{P}(\psi_{m,n})$
- Correlations: $\langle e_{m,n}, e_{m',n'} \rangle, \langle \psi_{m,n}, \psi_{m',n'} \rangle, \ldots$

\downarrow

Hydrodynamic response (EoS, $\eta/s, \zeta/s, \ldots$)

\downarrow

Ensemble of events (spectra): Full characterization

- Averages: $\langle v_n \rangle, \langle \psi_n \rangle, \ldots$
- Probability distributions: $\mathcal{P}(v_n), \mathcal{P}(\psi_n), \ldots$
- Correlations: $\langle v_n, v_m \rangle, \langle \psi_n, \psi_m \rangle$

- Determine matter properties: $\eta/s(T, \mu_i), \zeta/s(T, \mu_i), \ldots$
- Initial state must be determined simultaneously
limits for η/s

(assume $\eta/s = \text{constant}$)
Uncertainty from initial conditions

- **UrQMD + (2+1)D viscous fluid dynamics (VISHNU)**
- \(\eta/s \sim 0.08 - 0.24 \) (RHIC)
- Large uncertainty (factor 2-3) from the initial conditions (MC-KLN \(\eta/s \sim 0.20 \) vs. MC-Glauber \(\eta/s \sim 0.08 \))
Identified hadrons π, K, p: elliptic flow

- UrQMD + (2+1)-D viscous hydro (VISHNU)
- Mass ordering of elliptic flow (prediction of hydrodynamics)
- Good agreement with the data
Identified hadrons π, K, p: p_T-spectra

- UrQMD + (2+1)-D viscous hydro (hybrid)
- Mass dependence of p_T slopes & multiplicities
Higher harmonics: v_2, v_3, v_4, ...

Gale, Jeon, Schenke, Tribedy and Venugopalan, PRL 110, 012302 (2013)

Constraints to initial conditions: v_2/v_n ratio depends on IC
- IP-Glasma initial state + viscous hydrodynamics (MUSIC) $\rightarrow v_n$'s with $\eta/s = 0.20$ (LHC) or $\eta/s = 0.12$ (RHIC)
- η/s (RHIC) $\neq \eta/s$ (LHC): indication of T-dependence of η/s?
Fluid dynamical behaviour: all the data explained by functions:

\[p(T, \{\mu_i\}), \eta/s(T, \{\mu_i\}), \zeta/s(T, \{\mu_i\}), \ldots \]

properties of matter: should not change with \(\sqrt{s} \) or initial state
\[\eta/s = \text{constant} \rightarrow \eta/s(T) \]
$\eta/s(T)$ from LHC v_n's

+ fluctuations (preliminary results) poster by R. Paatelainen

- initial state: pQCD + local saturation (EKRT revisited)
- v_n's do not give unique constraints to $\eta/s(T)$
- If we require minimum near $T_c \longrightarrow$ Constant η/s gives upper limit for $\eta/s(T \sim T_c)$
$\eta/s(T)$ from LHC and RHIC v_n’s

+ fluctuations (preliminary results) poster by R. Paatelainen

LHC \rightarrow RHIC: more sensitivity to hadronic viscosity
Beam energy scan

- More sensitivity to the properties of hadronic matter

Karpenko, Bleicher, Huovinen and Petersen, arXiv:1310.0702 [nucl-th]

- Same model that works at LHC and top RHIC energy works at lower \sqrt{s} as well
- J. Auvinen (talk): \sqrt{s} dependence of v_3 more sensitive probe of hadronic viscosity
Similar mass ordering of v_n (also $\langle p_T \rangle$) as in AA collisions.

Here $\eta/s = 0.08$ (consistent with AA collisions with Glauber $N_{bin} + N_{wn}$ mixture, but not with MC-KLN/IP-Glasma/pQCD + saturation that require larger η/s).

$\eta/s = 0.08$ also in other models that describe the flow data.

Talks: P. Romatschke, V. Kozlov, K. Werner.
Ultracentral AA: Bulk viscosity and NN-correlations

- CMS ultracentral AA collisions $v_2 \sim v_3$
- Hard to reproduce with η/s alone
- Add bulk viscosity + NN-correlations (talk by G. Denicol)

Bulk viscosity + correlations - IPGlasma

$$\frac{\zeta}{s} = b \times \frac{\eta}{s} \left(\frac{1}{3} - c_s^2 \right)^2$$

MUSIC 2.0

0-1% - LHC
Flow fluctuations: constraints to initial conditions
Strong correlation between $v_{2/3}$ and $\varepsilon_{2/3}$, i.e. $v_n \sim C\varepsilon_n$

At least within sufficiently narrow centrality bin:
$v_n/\varepsilon_n \sim \text{constant} \ (n = 2, 3)$

Relative fluctuations of $\varepsilon_n \rightarrow$ relative fluctuations of v_n

Probability distributions $P(\delta v_n) = P(\delta \varepsilon_n)$, $\delta v_n = (v_n - \langle v_n \rangle)/\langle v_n \rangle$
Flow fluctuations

G. Aad et al. [ATLAS Collaboration], JHEP 1311, 183 (2013)

- $P(v_2)$ compared to MC-Glauber and MC-KLN $P(\varepsilon_2)$
- MC-KLN: too narrow
- MC-Glauber: too wide
Variations of MC Glauber model

\[s \propto \rho_{bc}^\alpha \]
\[s \propto \rho_{wn}^\beta \]
\[s \propto f \rho_{bc} + (1-f) \rho_{wn} \]

\[\rho_{wn}/bc = \sum_{i=1}^{N_{wn,bc}} C_i e^{-\frac{(r-r_i)^2}{2\sigma^2}} \]

\(r_i \): positions of wounded nucleons or binary collisions from MC Glauber

Fluctuations in \(C_i \) or \(\sigma \) do not matter:
P(\(\delta v_n \)) measures geometry fluctuations, not fluctuations in particle/entropy production (Talk by T. Renk)
ν_3 fluctuations

ν_3 fluctuations identical for each case/centrality (ν_3 is from random geometry fluctuations, not from underlying average nuclear overlap geometry)

Universal fluctuation-driven eccentricities

(talk by L. Yan)

Universal fluctuation spectrum, \(P(\varepsilon) = 2\alpha \varepsilon (1 - \varepsilon^2)^{\alpha-1} \)

Assume linear response \(v_n = C_n \varepsilon_n \)

→ predictions for \(v_2\{2\}/v_2\{4\}, v_2\{4\}/v_2\{6\}, v_2\{6\}/v_2\{8\} \)

Confirmed by CMS: talk by Quan Wang
IP-Glasma initial conditions

- Classical Yang-Mills
- Pre-thermal evolution
- Viscous fluid dynamics (MUSIC)
- Good agreement with the data over several centrality classes (talk by B. Schenke)
non-linear v_2, ε_2 correlation

+ fluctuations (preliminary results) poster by R. Paatelainen

- Near-central collisions (small ε_2): $v_2 \propto \varepsilon_2$
- Peripheral collisions (large ε_2): v_2 still strongly correlated to ε_2 (but not linearly)
effect on distributions

+ fluctuations (preliminary results) poster by R. Paatelainen

- Near-central collisions: follows from eccentricity
- Peripheral collisions: wider distributions after hydro
- Same observation with IP-Glasma IC (talk by B. Schenke)
- pQCD + saturation IC: works (blue)
- MC Glauber $N_{\text{bin}} + N_{\text{wn}}$: too wide (red)
Initial state constraints from $\varepsilon_2/\varepsilon_3$ ratio

- Estimate allowed range of $\varepsilon_2/\varepsilon_3$ ratio
- Constraints from v_2/v_3 data + fluid dynamics
Event-plane correlations $\langle \cos(N(\Psi_n - \Psi_m)) \rangle$

- Constraints to η/s and initial state.
- MC-Glauber ($\eta/s = 0.08$) vs MC-KLN ($\eta/s = 0.20$): clearly different correlators
 Behaviour of correlators: non-linear response to initial state geometry v_4 generated by ϵ_4 and $(\epsilon_2)^2$

$\langle \cos(N(\Psi_n - \Psi_m)) \rangle$ from the event-plane method strongly dependent on the event-plane resolution

- Large number of hydro runs randomly in the parameter space
 \[\rightarrow\] avoid huge number of runs
- Interpolate \[\rightarrow\] global fits
- Error estimates for the parameters (e.g. \(\eta/s\)) (diagonals)
- Identify correlators between the parameters (off diagonals)
- Here: example in 6–dimensional parameter space
Collective flow without fluid dynamics

BAMPS:

Boltzmann equation with pQCD $2 \leftrightarrow 2$ and $2 \leftrightarrow 3$ cross-sections

Talk by F. Senzel

Elliptic flow:

$\eta/s(T)$:

Pb+Pb, $\sqrt{s}=2.76$ TeV
improved GB, $X=0.3$
running coupling $\varepsilon=0.6$ GeV/fm3

CMS, charged particles, $v_2(4)$

averaged running coupling $<\alpha_s>$, $n_f=0$
averaged running coupling $<\alpha_s>$, $n_f=3$
shear viscosity / entropy density η/s, $n_f=0$
shear viscosity / entropy density η/s, $n_f=3$
More interesting talks not covered here:

- Including thermal fluctuations to fluid dynamics (noise):
 - T. Hirano
 - J. Kapusta
- Anisotropic hydrodynamics: change the expansion basis
 - U. Heinz
- Mode-by-mode fluid dynamics: perturbative approach to fluctuations
 - S. Flörchinger
- New hydro codes
 - C. Nonaka
 - V. Rolando (ECHO-QGP)
- η/s from acoustic scaling
 - R. Lacey
- And many more . . .
Summary

- Impressive agreement with several low-p_T observables
- $\eta/s = 0.08 - 0.24$ (assuming constant η/s)
- $\eta/s(T)$ still not well constrained by v_n data
- Fluid dynamical behaviour: all systems described by same $\eta/s(T, \{\mu_i\})$ (not yet clear)
- More constraints available: Fluctuation spectra, correlations
- Call for global analysis. Practical way: emulators