Azimuthal Anisotropy of Charged Particles from Multiparticle Correlations in pPb and PbPb Collisions

Quan Wang (Univ. of Kansas) for the CMS Collaboration

Quark Matter 2014, Darmstadt 20th May, 2014

- ➤ Experiment
- >Analysis Techniques
- ➢ Results
- > Summary

 In PbPb at 2.76 TeV collisions, well known ridge-like structure
 Collective flow

- In pp at 7 TeV, long-range ridge correlation observed
- Origin unclear

- In pPb 5.02 TeV, long-range ridge correlation expected
- Strongly enhanced
- **Collective flow?**

Quan Wang

CMS Lami : 124 Run : 21129 yoffine : 418

1

Intensive studies on ridge

- ALICE: PLB 719 (2013) 29-41
- CMS: PLB 724 (2013) 213
- ATLAS: PLB 725 (2013) 60-78

Great interest of correlations involving even more particles

arXiv:1311.7325 (Bzdak, Bozek & McLerran)
 PRL 112(2014)082301 (Yan & Ollitrault)

CMS Detector

CMS Detector

Experiment

- ➢ pPb Run at LHC
 - $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 35 \text{ nb}^{-1}$
- > Triggers
 - Minimum Bias
 - High Multiplicity
- ≻ PbPb
 - √s_{NN} = 2.76 TeV (50-100%)
 - Same reconstruction as pPb

Multiplicity Distribution

Offline track multiplicity $N_{trk}^{offline}$, $p_T > 0.4$ GeV/c, $|\eta| < 2.4$

Analysis Techniques

6- and 8-particle cumulant

- Genuine 6- and 8-particle correlations
- Insensitive to non-flow contributions from < 6 and 8 particles

Lee-Yang Zeros

- Genuine all-particle correlation
- Built-in correction for nonuniform distribution

Multiparticle Cumulant

➢ 6-particle correlator, per event

➢ 6-particle cumulant, all events

$$c_n\{6\} = \left\langle \left\langle 6\right\rangle \right\rangle - 9 \bullet \left\langle \left\langle 4\right\rangle \right\rangle \left\langle \left\langle 2\right\rangle \right\rangle + 12 \bullet \left\langle \left\langle 2\right\rangle \right\rangle^3$$

► Q-Cumulant: decompose → flow vector $Q_n = \sum_{i=1}^{M} w_i e^{in\varphi_i}$

$$\blacktriangleright \text{Cumulant } v_n \Rightarrow v_n \{4\} = \sqrt[4]{-c_n \{4\}}, v_n \{6\} = \sqrt[6]{\frac{1}{4}c_n \{6\}}, v_n \{8\} = \sqrt[8]{-\frac{1}{33}c_n \{8\}}$$

Quan Wang

Lee-Yang Zeros Method

> All-particle correlation, per event

$$g(ir) = \prod_{j=1}^{M} \left[1 + i \cdot r \cdot w_j \cos\left(n(\phi_j - \theta)\right) \right]$$

Generating function, all events

Results – Cumulant

Results – V_2

Results $-v_2$

Results $-v_2$

Results $-v_2$

Results – v_2

 \triangleright v₂{4}, v₂{6}, v₂{8} and v₂{LYZ} are in good agreement ±10%

Result – Cumulant v₂

- In hydrodynamic picture
 - arXiv:1311.7325 (Bzdak, Bozek & McLerran)
 - PRL 112 (2014) 082301 (Yan & Ollitrault)

$$\begin{split} & \varepsilon_2\{4\} \cong \varepsilon_2\{6\} \cong \varepsilon_2\{8\} \\ & v_2\{4\} \cong v_2\{6\} \cong v_2\{8\} \end{split}$$

Result – Cumulant v₂ ratios

- In hydrodynamic picture
 - arXiv:1311.7325
 (Bzdak, Bozek & McLerran)
 - PRL 112 (2014) 082301 (Yan & Ollitrault)

$$\begin{split} & \varepsilon_2\{4\} \cong \varepsilon_2\{6\} \cong \varepsilon_2\{8\} \\ & v_2\{4\} \cong v_2\{6\} \cong v_2\{8\} \end{split}$$

Fluctuation-driven initialstate eccentricities [PRL 112 (2014) 082301 (Yan & Ollitrault)]

Result – Cumulant v₂ ratios

- In hydrodynamic picture
 - arXiv:1311.7325
 (Bzdak, Bozek & McLerran)
 - PRL 112 (2014) 082301 (Yan & Ollitrault)

$$\begin{split} & \varepsilon_2\{4\} \cong \varepsilon_2\{6\} \cong \varepsilon_2\{8\} \\ & v_2\{4\} \cong v_2\{6\} \cong v_2\{8\} \end{split}$$

Fluctuation-driven initialstate eccentricities [PRL 112 (2014) 082301 (Yan & Ollitrault)]

Summary

- > 6-, 8- and all-particle correlations are measured for the first time in pPb collisions at 5.02 TeV
- A direct comparison is made between pPb and PbPb as a function of multiplicity
- v₂{4}, v₂{6}, v₂{8} and v₂{LYZ} are consistent within 10% in pPb and PbPb, respectively
- Relative ratios of v₂ from cumulant methods are consistent with hydrodynamic predictions within current statistical precision

