Pseudorapidity dependence of long-range two-particle correlations in pPb collision at CMS

Lingshan Xu (Purdue University) for the CMS Collaboration

Quark Matter conference, Darmstadt May 20, 2014

- Motivations
- Decompose η dependent near-side jet and ridge
- Extract η dependent v_n from dihadron correlations
- Conclusions

Motivation

- Long range near-side ridge observed in pp and pPb
- Physics mechanisms under debate: hydro, CGC
- Study of $\Delta\eta$ dependence may reveal more insights

CMS experiment

Large η acceptance Tracker: |η|<2.5 Full φ coverage

Analysis procedure

 η_{trig}

 η_{assoc}

η_{assoc} ηtrig

- Previous analyses integrated over trigger and associate η . Possible $\Delta \eta$ dependence is averaged out.
- Use fixed narrow trigger η range:
 - $\Box -2.4 < \eta_{trig} < -2.0 \text{ (Pb-going side)}$ $\Box 2.0 < \eta_{trig} < 2.4 \text{ (p-going side)}$

- Two-particle acceptance is 100%; no need to divide by mixed-events.
- Efficiency corrected for associated particles.
- Correlation normalized per trigger particle.
- $p_T^{trig} = 0.3-3 \text{ GeV/c}, p_T^{assoc} = 0.3-3 \text{ GeV/c}$
- Low-multiplicity: $2 \le N_{trk}^{offline} < 20$. High-multiplicity: $220 \le N_{trk}^{offline} < 260$

Dihadron per trigger pair density

ZYAM method

- For each Δη slice, step through the Δφ range with Δφ width of 0.26 to find the minimum value.
- After ZYAM subtraction, near-side yield is calculated by integrating over $|\Delta \phi| < \pi/3$

$\Delta \phi$ distribution of correlated yield after ZYAM subtraction

Near-side jet and ridge decomposition

Use a fit function representing jet + ridge structure:

$$\frac{1}{N_{trig}} \frac{dN_{near}(\Delta \eta)}{d\Delta \eta} = \frac{Y\beta}{\sqrt{2}\sigma\Gamma(1/2\beta)} \exp[-(\frac{\Delta \eta^2}{2\sigma^2})^{\beta}] + (C + k\Delta \eta) \times ZYAM(\Delta \eta)$$

• Jet yield ratio of $Y_{jet}(220 \le N_{trk}^{offline} < 260)/Y_{jet}(N_{trk}^{offline} < 20)$: 3.13 ± 0.09 (Pb-side trigger) and 3.08 ± 0.11(p-side trigger)

High-multiplicity near-side fit

- Ridge favors linear $\Delta\eta$ -dependence; $(C + k \Delta \eta) \times ZYAM(\Delta \eta)$
- Other functional forms used for systematic study.
- Subtract the fitted jet to obtain the near-side ridge

Ridge yield vs η_{assoc}

Ridge yield vs η_{assoc}

Near-side ridge after jet subtraction

 Near-side ridge yield: different η dependences observed for Pb-going trigger and p-going trigger

Fourier coefficients V_n from dihadron correlation

• Fourier decomposition

$$\frac{1}{N_{trig}} \frac{dN^{pair}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} \left\{ 1 + \sum_{n} 2V_{n} \cos(n\,\Delta\phi) \right\}$$

- Calculate Fourier coefficient $V_n = \langle \cos(n \Delta \phi) \rangle$ as a function of $\Delta \eta$.
- Low-multiplicity subtraction to minimize jet contributions

$$V_n^{sub} = V_n - V_n (N_{trk}^{offline} < 20) \times \frac{N_{assoc} (N_{trk}^{offline} < 20)}{N_{assoc}} \times \frac{Y_{jet}}{Y_{jet} (N_{trk}^{offline} < 20)}$$
Phys. Lett. B 724, 213 (2013)

Fourier coefficients V_n from dihadron correlation

- Jet contribution mostly removed at short range.
- Small difference at long range: away jet contribution is small

Extract $v_n(\eta)/v_n(0)$ from Fourier coefficient

Assuming factorization, $V_n(\eta_{trig}, \eta_{assoc}) = v_n(\eta_{trig}) v_n(\eta_{assoc})$ calculate self-normalized single particle $v_n(\eta_{assoc}) / v_n(0)$: $v_n(\eta_{assoc}) / v_n(0) = V_n(\eta_{trig}, \eta_{assoc}) / V_n(\eta_{trig}, 0)$

Extract $v_n(\eta)/v_n(0)$ from Fourier coefficient

*v*₂(η)/ *v*₂(0):

*v*₃(η)/ *v*₃(0):

- v_2 shape is η dependent !
- v₂ from low-mult. subtraction: asymmetric about mid-rapidity
- With large errors, cannot draw conclusion for v_3

Conclusions

- Two-particle correlations studied in pPb, with trigger particles restricted to fixed, narrow windows, for Pb-going side (-2.4 < η_{trig} < -2.0) and p-going side (2.0 < η_{trig} < 2.4)
- Near-side jet and ridge decomposed:
 Ridge yield depends on η, and different for Pbgoing and p-going triggers.
- Fourier coefficients and self-normalized singleparticle harmonics extracted:

Significant η dependence observed for v_2 .

Backups

CMS experiment

Low multiplicity near-side fit result

- Jet yield ratio Y_{jet}/ Y_{jet}(N_{trk}<20) will be used for jet subtraction in v2 study
- No ridge

Lingshan Xu

