QCD in background magnetic fields

Gergely Endrődi

University of Regensburg

in collaboration with

G. Bali, F. Bruckmann, Z. Fodor, S. Katz and A. Schäfer

Quark Matter 2014 Darmstadt, 20. May 2014

Outline

- introduction: QCD + magnetic fields in nature and in experiments
- approach: through lattice simulations
- results: effects of the magnetic field on the (thermal) QCD vacuum
 - paramagnetism at high temperatures
 - electric polarization around topological objects (chiral magnetic effect)
- conclusions

Introduction

QCD phase diagram

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

QCD phase diagram

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- background *B*: a new direction to probe the strong interactions (separate quarks from gluons)
- this talk: consider T B plane

Example: heavy-ion collision

[STAR collaboration, '10]

- off-central collisions: beams generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- anisotropic spatial gradients

Example: heavy-ion collision

- off-central collisions: beams generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- anisotropic spatial gradients

Example: heavy-ion collision

- off-central collisions: beams generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- anisotropic spatial gradients

Magnetic response I: susceptibility

Magnetic susceptibility

- simplification: constant background magnetic field B
- free energy density in background magnetic field

$$f(B) = -\frac{T}{V}\log \mathcal{Z}(B)$$

magnetization

$$\mathcal{M} = -\frac{\partial f}{\partial (eB)}, \qquad \mathcal{M}|_{B=0} = 0$$

susceptibility

$$\chi = \left. \frac{\partial \mathcal{M}}{\partial (eB)} \right|_{B=0} = - \left. \frac{\partial^2 f}{\partial (eB)^2} \right|_{B=0}$$

- sign distinguishes between
 - paramagnets ($\chi > 0$): like magnetic field
 - diamagnets ($\chi < 0$): repel magnetic field
- additive renormalization

$$\chi_r = \chi - \chi|_{T=0}$$
 3 / 12

Magnetic susceptibility

- direct lattice simulation at nonzero B is possible (no sign problem)
- complication: B in a finite periodic volume is quantized

$$\Phi = qB \cdot L^2 = 2\pi N_b, \qquad N_b \in \mathbb{Z}$$

- in principle χ is ill-defined
- to circumvent this problem:
 - generalized integral method to determine f(B, T)
 - numerical differentiation to calculate χ [Bali et al. '13, Bali et al. in preparation]

Magnetic susceptibility

- high *T*: paramagnetic free quarks ⇔ low *T*: diamagnetic pions [Bali, Bruckmann, Endrődi, Katz, Schäfer, in preparation]
- surprisingly good agreement with PT at not-so-high T

Paramagnetism - heavy ions

- strong paramagnetism at high $T \rightarrow$ free energy minimal where B is maximal
- ▶ in non-uniform magnetic fields: deformation of QGP

Paramagnetism - heavy ions

- strong paramagnetism at high $T \rightarrow$ free energy minimal where B is maximal
- ▶ in non-uniform magnetic fields: deformation of QGP

 free energy minimization squeezes QCD matter anisotropically [Bali,Bruckmann,Endrődi,Schäfer '13]

Squeezing versus elliptic flow

• elliptic flow: anisotropic pressure gradients due to initial geometry

- competition between squeezing and elliptic flow
- crude estimate: squeezing contributes 5 50%, depending on beam energy [Bali,Bruckmann,Endrődi,Schäfer '13]
- need a more sophisticated model which takes into account B(x, y, t) and compares the two effects carefully

Magnetic response II: topology

Broken rotational symmetry

• magnetic field $B = F_{xy}$ induces the rotational symmetry breaking expectation value [loffe, Smilga '84] (to leading order in F_{xy})

$$\left\langle \bar{\psi}_{f}\sigma_{\mathbf{x}\mathbf{y}}\psi_{f}\right\rangle \propto q_{f}F_{\mathbf{x}\mathbf{y}}, \qquad \sigma_{\mu\nu}=\frac{1}{2i}[\gamma_{\mu},\gamma_{\nu}]$$

- magnetic field produces spin-polarization
- in a topological background pseudoscalar channels open up

$$\left< ar{\psi}_{\mathsf{f}} \sigma_{\mathsf{zt}} \psi_{\mathsf{f}} \right>_{\mathsf{Q}} \propto \mathsf{q}_{\mathsf{f}} \mathsf{F}_{\mathsf{xy}}$$

 magnetic field + Q produces electric polarization (compare chiral magnetic effect [Kharzeev et al '09])

From topology to electric dipoles

• in a locally fluctuating topological background

 $\left\langle \int d^4 x \, q_{\rm top}(x) \cdot \bar{\psi}_f \sigma_{zt} \psi_f(x) \right\rangle \propto q_f F_{xy}$

 magnetic field induces *local* correlation between topology and electric polarization [Buividovich et al. '10, Bali et al. '14]

Local CP-violation

• consider the dimensionless combination

[Bali, Bruckmann, Endrődi, Fodor, Katz, Schäfer '14]

$$C_{f} = \frac{\left\langle q_{\text{top}}(x) \cdot \bar{\psi}_{f} \sigma_{zt} \psi_{f}(x) \right\rangle}{\sqrt{\left\langle q_{\text{top}}^{2}(x) \right\rangle} \left\langle \bar{\psi}_{f} \sigma_{xy} \psi_{f}(x) \right\rangle}$$

- ▶ model description: self-dual gluonic background and $m_f \approx 0$ $C_f \sim 1 \Rightarrow B$ -polarization equals *E*-polarization for unit topology
- ▶ lattice simulation: physical m_{π} , continuum extrapolation $C_f \sim 0.13 \Rightarrow$ non-perturbative QCD interactions prevent full electric polarization of the quarks

Electric charge separation

 evidence for extended electric charge dipole moment [Bali, Bruckmann, Endrődi, Fodor, Katz, Schäfer '14]

$$D_f(\Delta) = \left\langle \int d^4 x \, q_{ ext{top}}(x) \cdot ar{\psi}_f \gamma_0 \psi_f(x + \Delta)
ight
angle \propto q_f B, \quad ext{if } \Delta \parallel B$$

Conclusions

Summary

• magnetic fields significantly affect the thermal QCD vacuum

 strong paramagnetism at high temperatures

- possible implication for heavy-ion collisions: paramagnetic squeezing
- induced electric polarization around topological objects (weaker than usual model assumptions would give)

