Motivations
The properties of the Quark-Gluon Plasma (QGP) at high temperature are encoded in its transport coefficients which in principle can be calculated within lattice QCD or related effective approaches.

For that purpose, we compare the results from the Nambu-Jona-Lasinio (NJL) model with those of the Dynamical QuasiParticle Model (DQPM) as well as the available data from Lattice QCD.

Equations of state
The equation of state (here the energy density divided by the Stefan Boltzmann limit) shows the variation of the numbers of degrees of freedom with temperature.

The energy density is extracted from the energy-momentum tensor (lhs for the NJL).

From the equation of state (which depends on the effective masses of the models), we can compute the trace anomaly, which gives a good estimate of the interaction intensity.

Viscosity
Macroscopic quantities such as the viscosity of a fluid can be extracted in the relaxation time approximation.

From elastic scattering (NJL) or the interaction rate (DQPM), we compute the shear and bulk viscosities which determine the transport properties of the system.

Speed of Sound
Related to the equation of state, the speed of sound is of interest for the study of fluctuations and collective motion.

Electric conductivity
The electric conductivity of quarks is important for the propagation of electro-magnetic fields in the QGP.

Conclusion / outlook
The study of the equation of state and the transport coefficients from the NJL and DQPM shows that these models have similar properties and can be used in transport simulations. This is already the case for DQPM which is included in the Parton-Hadron-String Dynamics (PHSD) approach. The NJL model is currently under implementation.

References
P. Rehberg et al., NPA 608, 356 (1996)
A. Peshier et al., PRL 94, 172301 (2005)
R. Marty et al., PRC 88, 045204 (2013)
W. Cassing, EPJ-ST 168, 3 (2009)
C. Ratti et al., EPJC 49, 213 (2007)
W. Cassing et al., PRL 110, 182301 (2013)
P. Chakraborty et al., PRC 83, 014906 (2011)
V. Ozvenchuk et al., PRC 87, 064903 (2013)
Y. Aoki et al., PLB 643, 46 (2006)
V. Ozvenchuk et al., PRC 87, 024901 (2013)
A. Peshier et al., PRL 94, 172301 (2005)