Phase diagram, fluctuations, thermodynamics and hadron chemistry

Observables and concepts

Claudia Ratti

University of Torino and INFN Torino (ITALY)

QCD Thermodynamics

- * Confinement
 - * At large distances the effective coupling is large
 - * Free quarks are not observed in nature
- * Asymptotic freedom
 - * At short distances the effective coupling decreases
 - * Quarks and gluons appear to be quasi-free

Hadron Gas

Quark-Gluon Plasma

Chiral Symmetry: broken

Chiral Symmetry: restored

Lattice QCD

- Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the highly nonlinear nature of the strong force
- * Lattice QCD: well-established non-perturbative approach to solving QCD
- * Solving QCD on a grid of points in space and time
- * The lattice action is the parameterization used to discretize the Lagrangian of QCD on a space-time grid

$$N_t = rac{1}{aT}$$

* From the partition function Z, knowledge of all the thermodynamics

$$F = -T \ln Z$$
, $p = \frac{\partial (T \ln Z)}{\partial V}$, $S = \frac{\partial (T \ln Z)}{\partial T}$,

$$\bar{N}_i = \frac{\partial (T \ln Z)}{\partial \mu_i} ,$$

$$E = -pV + TS + \mu_i \bar{N}_i$$

Sign problem

* The QCD path integral is computed by Monte Carlo algorithms which samples field configurations with a weight proportional to the exponential of the action

$$Z(\mu_B, T) = \operatorname{Tr}\left(e^{-\frac{H_{\text{QCD}} - \mu_B N_B}{T}}\right) = \int \mathcal{D}U e^{-S_G[U]} \det M[U, \mu_B]$$

 $\det M[\mu_B]$ complex \Longrightarrow Monte Carlo simulations are not feasibile.

* If the action is complex, its exponential is oscillating: it cannot be used as a probability

* This is the reason why lattice QCD simulations cannot presently be performed at finite chemical potential

* Possible solutions:

- \rightarrow Taylor expansion around $\mu_B=0$
- → Imaginary chemical potential
- Reweigthing techinque

All valid at small chemical potentials

Phase transitions and order parameters

- * We want to study the transition from hadrons to the QGP: deconfinement and chiral symmetry restoration
- * A phase transition is the transformation of a thermodynamic system from one phase or state of matter to another
- * During a phase transition of a given medium certain properties of the medium change, often discontinuously, as a result of some external conditions
- * The measurement of the external conditions at which the transformation occurs is called the phase transition point
- * Order parameter: some observable physical quantity that is able to distinguish between two distinct phases
- * We need to find observables which allow us to distinguish between confined/deconfined system and between chirally broken/restored phase

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

< Ф >~e-F/T

How much energy f is needed to extract the heavy quark from the system?

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

How much energy f is needed to extract the heavy quark from the system?

Confined system
Infinite energy is
needed

$$\langle \Phi \rangle = 0$$

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

How much energy F is needed to extract the heavy quark from the system?

Confined system
Infinite energy is
needed

$$\langle \Phi \rangle = 0$$

Deconfined system
Finite energy is
needed

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

How much energy F is needed to extract the heavy quark from the system?

Confined system
Infinite energy is
needed

$$\langle \Phi \rangle = 0$$

Deconfined system
Finite energy is
needed

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

< Ф >~e-F/T

How much energy f is needed to extract the heavy quark from the system?

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

< Ф >~e-F/T

How much energy F is needed to extract the heavy quark from the system?

For QCD with physical quark masses the transition is a smooth crossover

* We consider a system of gluons in which we put a heavy quark-antiquark pair as a probe

< Ф >~e-F/T

How much energy F is needed to extract the heavy quark from the system?

For QCD with physical quark masses the transition is a smooth crossover

- igspace The chiral condensate $\langle ar{\psi} \psi
 angle$ is the vacuum expectation value of the operator $ar{\psi} \psi$.
- * The magnitude of the constituent quark mass is proportional to it
 - Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

- igspace The chiral condensate $\langle ar{\psi} \psi
 angle$ is the vacuum expectation value of the operator $ar{\psi} \psi$.
- * The magnitude of the constituent quark mass is proportional to it
 - Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

Chirally broken system
Large effective quark
mass

$$\langle \bar{\psi}\psi \rangle \neq 0$$

- igspace The chiral condensate $\langle ar{\psi} \psi
 angle$ is the vacuum expectation value of the operator $ar{\psi} \psi$.
- * The magnitude of the constituent quark mass is proportional to it
 - Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

Chirally broken system
Large effective quark
mass

$$\langle \bar{\psi}\psi \rangle \neq 0$$

Chirally restored system
Small effective quark
mass

$$\langle \bar{\psi}\psi \rangle = 0$$

- igspace The chiral condensate $\langle ar{\psi} \psi
 angle$ is the vacuum expectation value of the operator $ar{\psi} \psi$.
- * The magnitude of the constituent quark mass is proportional to it
 - Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

Chirally broken system
Large effective quark
mass

$$\langle \bar{\psi}\psi \rangle \neq 0$$

Chirally restored system
Small effective quark
mass

$$\langle \bar{\psi}\psi \rangle = 0$$

Chiral condensate: order parameter for chiral phase transition

- igspace The chiral condensate $\langle ar{\psi} \psi
 angle$ is the vacuum expectation value of the operator $ar{\psi} \psi$.
- * The magnitude of the constituent quark mass is proportional to it
 - Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

For QCD with physical quark masses the transition is a smooth crossover

Chiral condensate: order parameter for chiral phase transition

- igspace The chiral condensate $\langle ar{\psi} \psi
 angle$ is the vacuum expectation value of the operator $ar{\psi} \psi$.
- * The magnitude of the constituent quark mass is proportional to it
 - Even if the "bare" quark mass in the QCD Lagrangian is small, they develop a constituent one, through interaction with the chiral condensate

For QCD with physical quark masses the transition is a smooth crossover

Chiral condensate: order parameter for chiral phase transition

Transition from QCD Thermodynamics

- * s/T³ indicates the number of particle species
- * Rapid rise = liberation of degrees of freedom
- * Compare to an ideal gas of quarks and gluons

$$s = \frac{4g}{\pi^2} T^3$$

* This gives us an idea of how strong the interaction is

What happens below Tc?

- * At low T and $\mu_B=0$, QCD thermodynamics is dominated by pions
- * as T increases, heavier hadrons start to contribute
- * Their mutual interaction is suppressed:

$$n_i n_k \sim \exp[-(M_i + M_k)/T]$$

* Interacting hadronic matter in the ground state can be well approximated by a non-interacting gas of hadronic resonances

$$p^{HRG}/T^4 = \frac{1}{VT^3} \sum_{i \in mesons} \ln \mathcal{Z}_{\boldsymbol{m_i}}^M(T, V, \mu_{X^a}) + \frac{1}{VT^3} \sum_{i \in baryons} \ln \mathcal{Z}_{\boldsymbol{m_i}}^B(T, V, \mu_{X^a}) ,$$

with
$$\ln \mathcal{Z}_{m_i}^{M/B} = \mp rac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1\mp z_i e^{-arepsilon_i/T})$$
 , $arepsilon_i = \sqrt{k^2+m_i^2}$,

$$z_i = \exp\left((\sum_a X_i^a \mu_{X^a})/T\right)$$
 and X^a are all conserved charges.

R. Hagedorn, N. Cabibbo and G. Parisi

How many resonances do we include?

- * With different mass cut-offs we can separate the contribution of different particles
- * Known resonances up to M=2.5 GeV
- * ~170 different masses \longleftrightarrow 1500 resonances

Evolution of a heavy-ion collision

- * Chemical freeze-out: inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)
- * Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)
- * Hadrons reach the detector

Hadron yields

- * E=mc²: lots of particles are created
- * Particle counting (average over many events)
- * Take into account:
- * detector inefficiency
 - * missing particles at low pt
 - * decays

* HRG model: test hypothesis of hadron abundancies in equilibrium

$$N_i = -T \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i V}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T] \pm 1}$$

Hadron yields

- * E=mc²: lots of particles are created
- * Particle counting (average over many events)
- * Take into account:
 - * detector inefficiency
 - * missing particles at low pt
 - * decays
- * HRG model: test hypothesis of hadron abundancies in equilibrium
- * We need:
 - * a complete hadron spectrum
 - * control the hadron fraction from decays

Decays

* Most hadrons are subject to strong and electromagnetic decays

$$\Delta \to p(n) + \pi$$
, $\rho \to \pi + \pi$

- * e.g. pions: 1/4 primordial, 3/4 from strong decays
- * Weak decays can be treated too:

$$\Sigma \to \Lambda + \gamma$$

* after chemical freeze-out: only elastic and quasi-elastic scatterings take place:

$$\pi\pi \to \rho \to \pi\pi$$

$$p\pi \to \Delta \to p\pi$$

$$p\pi \to \Delta \to p\pi$$
 $K\pi \to K^* \to K\pi$

$$\bar{N}_i = N_i + \sum_r d_{r \to i} \, N_r$$

The thermal fits

* Fit is performed minimizing the X²

* Fit to yields: parameters T, MB, V

* Fit to ratios: the volume V cancels out

* Changing the collision energy, it is possible to draw the freeze-out line in the T, MB plane

Cleymans et al, Becattini et al, Andronic et al.

Caveats

- * These results are model-dependent
 - * they depend on the particle spectrum which is included in the model
 - * possibility of having heavier states with exponential mass spectrum
 - * not known experimentally but can be postulated
 - * their decay modes are not known

Caveats

- * These results are model-dependent
 - * they depend on the particle spectrum which is included in the model
 - * possibility of having heavier states with exponential mass spectrum
 - * not known experimentally but can be postulated
 - * their decay modes are not known
- * Purpose: extract freeze-out parameters from first principles
 - * direct comparison between experimental measurement and lattice QCD results
 - * observable: fluctuations of conserved charges (electric charge, baryon number and strangeness)
 - * directly related to moments of multiplicity distribution (measured)
 - * lattice QCD looks at conserved charges rather than identified particles

Fluctuations of conserved charges

- * Consider the number of electrically charged particles No
- * Its average value over the whole ensemble of events is <NQ>
- * In experiments it is possible to measure its event-by-event distribution

STAR Collab .: 1402.1558

fluctuations of conserved charges???

* If we look at the entire system, none of the conserved charges will fluctuate

*By studying a sufficiently small subsystem, the fluctuations of conserved quantities become meaningful

- → ΔY_{total}: range for total charge multiplicity distribution
- \rightarrow ΔY_{accept} : interval for the accepted charged particles
- → ΔY_{corr} : charge correlation length characteristic to the physics of interest
- → ∆Ykick: rapidity shift that charges receive during and after hadronization

V. Koch: 0810.2520

Cumulants of multiplicity distribution

- * Deviation of No from its mean in a single event: $\delta N_Q = N_Q \langle N_Q \rangle$
- * The cumulants of the event-by-event distribution of No are:

$$K_2 = \langle (\delta N_Q)^2 \rangle$$

$$K_3 = < (\delta N_Q)^3 >$$

$$K_3 = \langle (\delta N_Q)^3 \rangle$$
 $K_4 = \langle (\delta N_Q)^4 \rangle - 3 \langle (\delta N_Q)^2 \rangle^2$

* The cumulants are related to the central moments of the distribution by:

variance: $\sigma^2 = K_2$

Skewness: $S=K_3/(K_2)^{3/2}$ Kurtosis: $K=K_4/(K_2)^2$

Experimental measurement

* Volume-independent ratios:

$$M/\sigma^2 = K_1/K_2$$

$$M/\sigma^2 = K_1/K_2$$
 $S\sigma = K_3/K_2$ $K\sigma^2 = K_4/K_2$ $S\sigma^3/M = K_3/K_1$

STAR Collab .: 1402.1558

Experimental measurement

* Volume-independent ratios:

$$M/\sigma^2 = K_1/K_2$$

$$M/\sigma^2 = K_1/K_2$$
 $S\sigma = K_3/K_2$ $K\sigma^2 = K_4/K_2$ $S\sigma^3/M = K_3/K_1$

STAR Collab .: 1402.1558

Susceptibilities of conserved charges

* Susceptibilities of conserved charges

$$\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.$$

* Susceptibilities of conserved charges are the cumulants of their event-by event distribution

mean :
$$M = \chi_1$$
 variance : $\sigma^2 = \chi_2$

skewness :
$$S = \chi_3/\chi_2^{3/2}$$
 kurtosis : $\kappa = \chi_4/\chi_2^2$

$$S\sigma = \chi_3/\chi_2 \qquad \qquad \kappa\sigma^2 = \chi_4/\chi_2$$

$$M/\sigma^2 = \chi_1/\chi_2$$
 $S\sigma^3/M = \chi_3/\chi_1$

- * Lattice QCD results are functions of temperature and chemical potential
 - By comparing lattice results and experimental measurement we can extract the freeze-out parameters from first principles

F. Karsch: Centr. Eur. J. Phys. (2012)

Baryometer and thermometer

* Let us look at the Taylor expansion of RB31

$$R_{31}^B(T,\mu_B) = \frac{\chi_3^B(T,\mu_B)}{\chi_1^B(T,\mu_B)} = \frac{\chi_4^B(T,0) + \chi_{31}^{BQ}(T,0)q_1(T) + \chi_{31}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)} + \mathcal{O}(\mu_B^2)$$

- * To order μ^2 B it is independent of μ_B : it can be used as a thermometer
- * Let us look at the Taylor expansion of RB12

$$R_{12}^B(T,\mu_B) = \frac{\chi_1^B(T,\mu_B)}{\chi_2^B(T,\mu_B)} = \frac{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$

* Once we extract T from RB31, we can use RB12 to extract µB

Caveats

- * Effects due to volume variation because of finite centrality bin width
- * Finite reconstruction efficiency
- * Spallation protons
- * Canonical vs Gran Canonical ensemble
- * Proton multiplicity distributions vs baryon number fluctuations
- * Final-state interactions in the hadronic phase

Caveats

- * Effects due to volume variation because of finite centrality bin width
 - = Experimentally corrected by centrality-bin-width correction method
- * Finite reconstruction efficiency
 - Experimentally corrected based on binomial distribution A.Bzdak, V. Koch, PRC (2012)
- * Spallation protons
 - Experimentally removed with proper cuts in pt
- * Canonical vs Gran Canonical ensemble
 - Experimental cuts in the kinematics and acceptance V. Koch, S. Jeon, PRL (2000)
- * Proton multiplicity distributions vs baryon number fluctuations
 - Numerically very similar once protons are properly treated

 M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238
- * Final-state interactions in the hadronic phase

J.Steinheimer et al., PRL (2013)

Consistency between different charges = fundamental test

Results

Consistency between different charges and with SHM fits

See QCD Phase diagram session on Wednesday morning

WB Collab .: 1403.4576

Our world is not ideal:

neither chiral symmetry $(m_q=0)$ nor confinement $(m_q=\infty)$ is well defined.

Existence of QCD critical point predicted by models

Z(2) universality class

Our world is not ideal:

neither chiral symmetry (mq=0) nor confinement (m_q=∞) is well defined.

NJL/II

1600

1400

 μ_B

1000

Fluctuations at the critical point

Rajagopal, Shuryak, Stephanov (1998)

Consider the order parameter for the chiral phase transition σ ~< $\bar{\psi}\psi$ >

It has a probability distribution of the form:

$$\mu = \mu_{\text{CP}}$$

$$P[\sigma] \sim \exp\left\{-\Omega[\sigma]/T\right\},$$

$$\Omega = \int d^3x \left[\frac{1}{2} (\boldsymbol{\nabla} \sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right] .$$

$$\mu > \mu_{\rm CP}$$

where:
$$m_{\sigma} \equiv \xi^{-1}$$

and, near the critical point, $\xi \rightarrow \infty$:

$$\lambda_3 = \widetilde{\lambda}_3 T (T \xi)^{-3/2}$$
, and $\lambda_4 = \widetilde{\lambda}_4 (T \xi)^{-1}$

$$\kappa_3 = \langle \sigma_V^3 \rangle = 2VT^{3/2} \tilde{\lambda}_3 \xi^{4.5}$$

$$\kappa_4 = \langle \sigma_V^4 \rangle = 6VT^2 [2(\tilde{\lambda}_3)^2 - \tilde{\lambda}_4] \xi^7$$

M. Stephanov (2009)

correlation length ξ is limited due to critical slowing down, together with the finite time the system has to develop the correlations: ξ <2-3 fm

Berdnikov-Rajagopal

Experimental fluctuations

We consider the fluctuation of an observable (e.g. proton multiplicity)

$$\delta N = \sum_{m p} \delta n_{m p}$$

At the critical point, it receives both a regular and a singular contribution. The latter comes from the coupling to the σ field:

$$\delta n_{m p} = \underbrace{\delta n_{m p}^0}_{ ext{statistical}} + \underbrace{\frac{\partial ar{n}_{m p}}{\partial m} \, g \, \delta \sigma}_{ ext{critical}}$$
(Poisson)

Higher order moments have stronger dependence on ξ : they are more sensitive signatures for the critical point

M. Stephanov

Sign of kurtosis

The 4th order cumulant becomes negative when the critical point is approached from the crossover side: from Ising model:

$$M=R^{\beta}\theta$$
, $t=R(1-\theta^2)$, $H=R^{\beta\delta}h(\theta)$

$$K_4 = \langle M^4 \rangle$$
 (†, #) -> ($\mu - \mu_{CP}$, T-T_{CP})

Consequently, the experimental 4th order fluctuation will be smaller than its Poisson value (precise value depends on ξ , on how close the freeze-out occurs to the critical point...)

$$<(\delta N)^4>=< N>+< \sigma^4_V>...$$

M. Stephanov (2011)

Experimental results on kurtosis

STAR Collab .: 1309.5681

STAR Collab .: 1402.1558

Kurtosis of Net-protons shows anomalous dip at $\sqrt{s_{NN}}$ = 19 GeV. Not confirmed by kurtosis of Net-charge.

Conclusions

- R QCD transition: a smooth crossover at $\mu_B=0$; expected to become first order at large μ_B (critical point)
- * Lattice QCD simulations: equilibrium, thermodynamic quantities at small μ_B .
- # HRG model: good description below the transition. Fit of hadron yields and ratios -> freeze-out parameters
- * Alternative: fluctuations of conserved charges. Determination of freeze-out parameters from first principles
- * Fluctuations at the critical point: expected to scale with some power of correlation length
- * The kurtosis changes sign in the vicinity of the critical point