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Abstract
In this work [1] we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous

conformal hydrodynamic equations. Small amplitude waves are studied within the linearization approximation while waves with large
amplitude are investigated using the reductive perturbation method. Our results indicate the presence of a “soliton-like” wave solution in
2nd order conformal hydrodynamics despite the presence of dissipation and relaxation effects. More details in arXiv:1402.5548

1 Introduction and Motivation
We investigate how the presence of a nonzero shear viscosity
relaxation time affects wave propagation in relativistic fluids.

The simplest extension of the well-known Navier-Stokes (NS)
equations to relativistic fluids is plagued with instabilities and
acausal signal propagation in the resulting equations [2, 3, 4].

Currently, most fluid-dynamical simulations of the QGP employ a
set of relaxation-type equations similar to those derived by Israel
and Stewart (IS) [5] to close the conservation laws.

In the following sections we study the propagation of linear and
nonlinear waves in relativistic fluids described by (a simplified set
of) of the 2nd order conformal IS equations.

2 Second-order conformal hydro-
dynamic equations

We focus on the simplest set of equations that can still describe
a causal (and stable) conformal dissipative fluid. The simplest
set of conformal Israel-Stewart theory equation are:

Dε + (ε + p)θ − πµν σµν = 0 (1)
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where the dissipative tensor πµν is also a degree of freedom and
satisfies a differential equation. Under linear perturbation, one
can show that small fluctuations around the equilibrium state in
the x direction leads to (c2

s = 1/3 and χ = 4η
3s):
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The Fourier transform of the energy density δε(x̂, t̂) =

A eIm[ω̂]t̂eiRe[ω̂]
(
k̂x̂/Re[ω̂]−t̂

)
leads to a dispersion relation for Eq.

4. We consider the coefficients of the strongly coupledN = 4 Su-
persymmetric Yang-Mills (SYM) fluid where η0/s0 = 1/(4π) and
τ̂π = [2 − ln(2)]/(2π) [6]. In Fig. 1 we plot the group velocity v̂g
and the attenuation coefficient Im[ω̂] for the three roots ω̂I , ω̂II
and ω̂III of (4) dispersion relation. In Fig. 1-a one can clearly
notice that the three modes are stable since the imaginary parts
of the modes are always negative. In Fig. 1-b there is no causal-
ity violation since there is no divergence as k̂ increases and the
group velocity is bounded by unity. This figure shows that the lin-
ear sound wave disturbances around thermodynamical equilib-
rium in 2nd order hydrodynamics (with the transport coefficients
of strongly-coupled N = 4 SYM) are causal and stable. A similar
study can be done for the shear channel [4].
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Fig. 1 - Stability and causality properties of disturbances around
equilibrium for IS hydrodynamics (described by Eq. (4)) with

transport coefficients from strongly-coupled N = 4 SYM.

3 Nonlinear wave equations in
conformal IS

The effects from a relaxation timescale τ̂π have not yet been stud-
ied in the context of nonlinear wave propagation. In order to in-
vestigate its effects in the study of nonlinear waves, we shall use
the Reductive Perturbation Method (RPM) [7]. The RPM was
used to study nonlinear waves in relativistic and non-relativistic
hydrodynamics in [8]. Our goal in this section is to find the non-
linear wave equation that governs the perturbation of the energy
density in a hot dissipative and causal fluid described by IS hy-
drodynamics.

The procedure consists of changing the variables x and t to the
stretched coordinates X and Y, and following an expansion in a
small dimensionless parameter σ:

X = σ1/2 1

L

(
x− t√

3

)
and Y = σ3/2 t√

3L
(5)

η = σ1/2 η̃ and τπ = σ1/2 τ̃π . (6)

ε̂ =
ε

ε0
= 1 + σε1 + σ2ε2 + σ3ε3 + . . . (7)

v̂x =
vx
cs

= σv1 + σ2v2 + σ3v3 + . . . (8)

and
π̂xx =

πxx

p0
= σπxx1 + σ2πxx2 + σ3πxx3 + . . . . (9)

The set of differential equations obtained from the RPM method
is given by
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(11)
where ε̂1 ≡ σε1 and ε̂2 ≡ σ2ε2.

Eq. 10 is the well-known Burgers equation, while Eq. 11 is a
differential equation that depends non-trivially on the evolution of
ε1.

4 Numerical Results
The evolution of the energy density profile is developed for the
following initial condition:

ε̂1(x̂, 0) = A1 sech
2
(
x̂

B1

)
(12)

and inserting the obtained numerical solution of (10) into (11)
with the initial profile for ε̂2

ε̂2(x̂, 0) = A2 sech
2
(
x̂

B2

)
. (13)
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Fig 2 - Numerical solutions for the energy density disturbances in the
nonlinear regime in Eqs. (29) for η0/s0 = 1/(4π) and

τ̂π = [2− ln(2)]/(2π). The perturbations with these initial profiles
mimic soliton behavior.
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Fig 3 - Numerical solutions for the energy density disturbance in the
nonlinear regime in Eq. (30) for η0/s0 = 1/(4π) and two choices of τ̂π.
For large values of the relaxation coefficient, the energy perturbation
ε̂2 acquires large amplitude and becomes inconsistent as a small

disturbance.

The main contribution from τ̂π in the energy density profile is a
dispersive effect, which also adds to the solitonic behavior. How-
ever, we noticed it is possible to find a breakdown of the expan-
sion for large values of τ̂π in relation to η0/so. Our nonlinear treat-
ment of the wave equation for the energy density in hydrodynam-
ics indicates that in a consistent microscopic theory τ̂π and η0/s0
must be of comparable magnitude (this is valid, for instance, in
the case of kinetic theory calculations).

5 Conclusions
We derived a system of coupled differential equations which de-
scribes nonlinear wave perturbations in the energy density of
2nd order conformal fluids. Our semi-analytical treatment pro-
vides a simple (yet nontrivial) picture of how the relaxation time
coefficient affects the propagation of sound waves perhaps in a
more transparent way than in a complex numerical hydrodynam-
ical simulation.
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