

J/ ψ Production in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Julian Book for the ALICE Collaboration

ALICE | Quark Matter 2014 | 20.05.2014 | Julian Book

Motivation: J/ψ in Heavy-Ion Collisions

Quark-Gluon Plasma (QGP): Deconfined state of strongly interacting matter

 \bullet J/ ψ suppression proposed as a signature

[T.Matsui, H.Satz, Phys.Lett. B178(4), 416-422 (1986)]

 \Rightarrow Melting due to Debye-like color screening \downarrow

• Temperature dependent sequential suppression of states \downarrow

[F.Karsch, H.Satz, Z.Phys. C51, 209 (1991)]

- Cold Nuclear Matter effects (Nuclear absorption \downarrow , Shadowing \downarrow)
- Possible (re)combination of (un)correlated $c\overline{c}$ could play a major role at LHC \uparrow

[P.Braun-Munzinger, J.Stachel, Phys.Lett. B490, 196–202 (2000)]

[R.L.Thews, M.Schroedter, J.Rafelski, Phys.Rev. C63, 054905 (2001)]

 $J/\psi \rightarrow e^+e^-$ in |y|<0.9Tracking and particle identification with ITS + TPC in the Central Barrel $J/\psi \rightarrow \mu^+\mu^-$ in 2.5<y<4 Tracking and trigger chambers behind hadron absorber in the Muon spectrometer

J/ ψ acceptance down to $p_T = 0$

J/ψ Reconstruction in Pb-Pb Collisions

Invariant mass spectrum for all e^+e^- or $\mu^+\mu^-$ pair combinations

ALICE | Quark Matter 2014 | 20.05.2014 | Julian Book

Prompt and Non-Prompt J/ψ Separation

via secondary vertex identification exploiting the ITS capabilities

fraction of b-hadron decays obtained down to $p_{T,J/\psi} = 2 \text{ GeV/}c$

Nuclear Modification Factor RAA

$$R_{AA} = \frac{dN/dy}{\langle T_{AA} \rangle \times d\sigma_{J/\psi}^{pp}/dy}$$

• Differential in p_{T} , rapidity and centrality

• Nuclear Overlap <T_{AA}> from Glauber simulation

pp Reference

 \bullet mid-rapidity: Interpolation of measured inclusive J/ ψ cross sections

[PHENIX, Phys.Rev. D85, 092004 (2012), CDF, Phys.Rev. D71, 032001 (2005), ALICE, Phys.Lett. B718, 295 & 692 (2012)]

• forward rapidity: ALICE measurement of J/ψ cross sections

[ALICE, Phys.Lett. B718, 295 (2012)]

7

Inclusive J/ψ R_{AA} versus Event Centrality

Comparison to results by PHENIX ($\sqrt{s_{NN}} = 0.2 \text{ TeV}$)

mid-rapidity |y|<0.8

forward rapidity 2.5<y<4

No strong centrality dependence (for N_{part} > 70) Significantly different than at lower collision energy

Inclusive J/ψ R_{AA} versus Event Centrality

Comparison to theory calculations

mid-rapidity |y|<0.8

Statistical hadronization and transport models with **recombination component can describe the trend in data**

8

forward rapidity 2.5<y<4

Inclusive J/ψ R_{AA} versus Rapidity

Results integrated over p_T and centrality

9

A Large Ion Collider Experiment

Inclusive J/ψ R_{AA} versus Transverse Momentum

Comparison to results by PHENIX ($\sqrt{s_{NN}} = 0.2 \text{ TeV}$)

Similar p_T dependence in both rapidity ranges Less suppression at low p_T compared to RHIC

Inclusive J/ψ R_{AA} versus Transverse Momentum

Comparison to theory calculations

mid-rapidity |y|<0.8

Transport models with suppression and regeneration components **Recombination contribution important at low** p_T

11

forward rapidity 2.5<y<4

Inclusive J/ψ R_{AA} versus Transverse Momentum

Comparison to theory calculations

mid-rapidity |y|<0.8

Transport models with suppression and regeneration components **Recombination contribution important at low** p_T

ALICE | Quark Matter 2014 | 20.05.2014 | Julian Book

forward rapidity 2.5<y<4

Comparison to Cold Nuclear Matter Effects

Hypothesis: J/ ψ production mechanism dominated by 2 \rightarrow 1 kinematics and shadowing as main CNM effect

Similar gluon-x in Pb for p-Pb at $\sqrt{s_{NN}}=5.02$ TeV and Pb-Pb at $\sqrt{s_{NN}}=2.76$ TeV

Comparison to Cold Nuclear Matter Effects

Hypothesis: J/ ψ production mechanism dominated by 2 \rightarrow 1 kinematics and shadowing as main CNM effect Similar gluon-x in Pb for p-Pb at $\sqrt{s_{NN}}=5.02$ TeV and Pb-Pb at $\sqrt{s_{NN}}=2.76$ TeV

mid-rapidity

Comparison to Cold Nuclear Matter Effects

Hypothesis: J/ ψ production mechanism dominated by 2 \rightarrow 1 kinematics and shadowing as main CNM effect Similar gluon-x in Pb for p-Pb at $\sqrt{s_{NN}}=5.02$ TeV and Pb-Pb at $\sqrt{s_{NN}}=2.76$ TeV

mid-rapidity

Inclusive $J/\psi \rightarrow \mu^+\mu^-$ Production at very low p_T

Signal extraction with the Muon spectrometer at forward rapidity

> and Elliptic Flow v₂

2σ Significance in $2 < p_T < 6$ GeV/c ا^{د0 ∾} < ALICE (Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV), centrality 20%-60%, 2.5 < y < 4.0 Y. Liu et al., b thermalized Y. Liu et al., b not thermalized 0.2 X. Zhao et al., b thermalized 0.1 -0.1⊢ global syst. = ± 1.4% 2 3 5 6 8 9 10 0 7 $p_{_{\rm T}}$ (GeV/c) [ALICE, Phys.Rev. Lett. 111, 162301 (2013)] ALI-PUB-65926

In-medium J/ψ <*p*_T> lower than in pp collisions Not observed at lower collision energy

Non-zero J/ψ v₂ observed at intermediate p_T Well described by models including recombination

ALICE | Quark Matter 2014 | 20.05.2014 | Julian Book

17

Conclusion

18

J/ ψ Production in Pb-Pb Collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

- No significant centrality dependence (for N_{part} > 70)
- Less suppression at low p_{T}
- Hint for enhancement at low p_T with respect to a simple extrapolation of CNM effect estimated from p-Pb results
- Lower $< p_T >$ in Pb-Pb collisions compared to pp
- Non-zero elliptic flow at intermediate p_T

Results significantly different to lower collision energy results

 \rightarrow Clear Indication for (re)combination contribution at LHC