

Effective lattice Polyakov loop theory for investigations of dense nuclear matter

 $\mathbf G.$ Bergner 1 , J. Langelage 2 , M. Neuman 1 , O. Philipsen 1 ¹ITP, Universität Frankfurt; ² ITP, ETH Zürich

The effective theory and its derivation from QCD

• QCD partition function with Yang-Mills action S_q and quark fermion matrix Q for N_f number of flavors on the lattice (Wilson fermions)

 $Z =$ Z $\begin{bmatrix} dU_\mu \end{bmatrix}$ exp $\begin{bmatrix} -S_g(\beta) \end{bmatrix}$ N_f $f=1$ $\det\left[Q^f(\kappa)\right]$, $-S_g =$ β $2N_c$ \sum p $\left[\operatorname{tr} U_p + \operatorname{tr} U_p^\dagger\right]$ $\left[\begin{array}{c} + \ p \end{array}\right]$,

• parameters:

 $-\beta=\frac{2N_c}{a^2}$ g_0^2 θ ; $\kappa=\frac{1}{2(4+1)}$ $\frac{1}{2(4+m_0)}$; bare gauge coupling g_0 and bare quark mass m_0 – number of lattice sites in τ direction N_{τ} ; lattice spacing a; temperature $T = \frac{1}{aN}$ aN_{τ} • effective Polyakov loop action S_{eff} obtained from an integration of spatial links U_k :

The strong coupling and hopping parameter expansion

- $S_{\text{eff}} = \lambda_1 S_{\text{nearest neighbors}} + \lambda_2 S_{\text{next to nearest neighbors}} + \ldots$
- strong coupling expansion parameter $u = \frac{\beta}{18} + \ldots < 1$
- ordering principle for the interactions: higher representations and long distances are suppressed ($\lambda_1 = O(u^{N_{\tau}}), \lambda_2 = O(u^{2N_{\tau}}))$
- strong coupling approach suggests logarithmic form of the nearest neighbor interactions

 $e^{-S_{\text{eff}}} \approx$ $\langle i,j \rangle$ nearest n. $\left(1+2\lambda_1\mathrm{Re}\left(L_iL_i^\dagger\right)\right)$ $\binom{1}{j}$

$$
\exp[-S_{\text{eff}}] \equiv \int [dU_k] \exp[-S_g] \prod_{f=1}^{N_f} \det [Q^f],
$$

• dimensional reduction from $3 + 1D$ to $3D$ $U_u(x,t) \to U_0(x) \to \text{Polyakov loops } L(x)$

> $L(\mathbf{x}) = \text{Tr } W(\mathbf{x}) = \text{Tr}[\prod$ N_τ $\tau = 0$ $[U_0({\bf x},\tau)]={\cal P}e^{ig\int\int}$ 1 $\mathcal I$ $\int_0^T d\tau A_0(\mathbf{x},\tau)$

• higher orders: spatial propagation \Rightarrow non-trivial interactions of Polyakov loops e. g.

• remaining path integral

 $Z =$ Z $[dL]e^{-S_{\text{eff}}[L]}$

Effective Yang-Mills action

+ + −→ −→

Effective quark action

• Wilson-Dirac operator: $Q = 1 - \kappa H[U]$ in quark action

 $S_q = -N_f \text{Tr} \log(1 - \kappa H) = N_f \sum$ l κ^l l $\hbox{Tr}\, H^l$

• expansion around heavy quark limit, $\kappa = \frac{1}{2(4+m_0)} \ll 1$ • static quarks: only propagation in τ direction \Rightarrow Polyakov loop L • small effective couplings: perturbative expansion of effective theory • expansion parameter: effective coupling λ_1 and κ^2 two quark line interaction

$$
\det(1 + T^- + T^+) = \prod_n (1 + cL_n + c^2L_n^{\dagger} + c^3)^2 (1 + \bar{c}L_n^{\dagger} + \bar{c}^2L_n + \bar{c}^3)^2
$$

- chemical potential μ
- quarks $L(T^+)$ get factors $e^{a\mu}$: $c = (2\kappa e^{a\mu})^{N_{\tau}}$
- onset below $\mu_B = m_B$ due to nuclear binding energy
- \bullet energy density: e
- binding energy per nucleon: $\epsilon = \frac{e n_B m_B}{n_B m_B}$ $n_B m_B$
- effect of attractive quark-quark interaction: ϵ negative, decreases with meson mass

- estimate truncation error: compare κ^2 and κ^4 results • continuum limit $a \to 0$ at fixed $\frac{m}{T}$ $\frac{n_B}{T}$ and $T = \frac{1}{aN}$ aN_{τ}
- requires larger values of κ
- combined error: truncation error and uncertainty of continuum extrapolation
- lattice saturation leads to larger error in the high density region

Low temperature limit in the heavy dense regime

• low temperature: N_{τ} large

• heavy: $\kappa \ll 1$

• dense: $2\kappa e^{a\mu} \approx 1$; $\bar{c} \approx 0$

 \Rightarrow dominated by short range quark line interactions

• heavy quark limit: small binding energy, smooth crossover

Circumvent the sign problem: Numerical and analytic investigations of the effective theory

• sign problem: complex fermion determinant prevents lattice simulations at larger chemical potential

- $\bullet \mu_I = \mu_u = -\mu_d$
- pion condensation: $\mu_I = m_\pi/2$
- transitions coincide for static quarks: $m_B/3 = m_\pi/2$
- effect of quark interactions: gap between the two transitions

Non-perturbative effects from complex Langevin and standard MC simulations

- effective theory inherits only mild version of sign problem
- solution 1: standard MC simulations and reweighting
- solution 2: complex Langevin algorithm
- correctness criteria checked, consistent results

Analytic expansion of the effective theory

Nuclear liquid gas transitions in the heavy dense regime of QCD

- interesting for QCD: lower mass
- higher orders in the κ expansion necessary
- investigations of relevant gluon-quark interactions at higher temperatures

• $\mu_B \approx m_B$ baryons are excited (step function at $T = 0$)

• saturation at large μ : lattice Pauli exclusion principle

[3] J. Langelage, S. Lottini and O. Philipsen, JHEP 1102 (2011) 057 [Erratum-ibid. 1107 (2011) 014] [arXiv:1010.0951 [hep-lat]].

Convergence and continuum limit

Isospin chemical potential

Bundesministerium

für Bildung

und Forschung

First studies beyond the heavy mass regime

- at lower masses, lower temperatures: transition becomes first order
- ⇒ transition between crossover and first order correctly reproduced by effective theory
- conservative estimate of reliable region in current truncation: small difference between $O(\kappa^2)$ and $O(\kappa^4)$
- so far interesting parameters outside this region, but κ^4 approximation might still be reasonable

Conclusions and further directions

- systematic derivation of effective Polyakov loop theory by a combined strong coupling and hopping parameter expansion
- useful tool at finite chemical potential, "solution" to the sign problem
-

• heavy dense low temperature regime: effective theory reproduces the features of full QCD

Improvements of the effective action: Yang-Mills contribution

- outside heavy dense low temperature regime: gluonic interactions become relevant
- \Rightarrow need further improvements of effective theory
- in confined region: ordering principle of effective couplings suggested by strong coupling still valid
- improvement of the effective couplings: include non-perturbative input form simulations of full theory

Improvements of the effective action: quark contribution

Further investigations

• further investigations of validity outside the heavy dense low temperature regime

References

[1] J. Langelage, M. Neuman and O. Philipsen, arXiv:1403.4162 [hep-lat]. [2] G. Bergner, J. Langelage and O. Philipsen, arXiv:1312.7823 [hep-lat].

• anti-quarks L^{\dagger} (T⁻) get factors $e^{-a\mu}$: $\bar{c} = (2\kappa e^{-a\mu})^{N_{\tau}}$ \Rightarrow interactions up to $\kappa^n + u^m$, $m + n = 4$ included

[4] M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, arXiv:1207.3005 [hep-lat]. [5] C. Wozar, T. Kaestner, A. Wipf and T. Heinzl, Phys. Rev. D 76 (2007) 085004 [arXiv:0704.2570 [hep-lat]].

[6] J. Greensite and K. Langfeld, arXiv:1301.4977 [hep-lat].

[7] R. De Pietri, A. Feo, E. Seiler and I. -O. Stamatescu, Phys. Rev. D 76 (2007) 114501 [arXiv:0705.3420 [hep-lat]].