

Effective lattice Polyakov loop theory for investigations of dense nuclear matter

<u>**G.** BERGNER¹</u>, J. LANGELAGE², M. NEUMAN¹, O. PHILIPSEN ¹ITP, Universität Frankfurt; ² ITP, ETH Zürich

The effective theory and its derivation from QCD

• QCD partition function with Yang-Mills action S_q and quark fermion matrix Q for N_f number of flavors on the lattice (Wilson fermions)

 $Z = \int [dU_{\mu}] \exp\left[-S_g(\beta)\right] \prod_{f=1}^{N_f} \det\left[Q^f(\kappa)\right] , \quad -S_g = \frac{\beta}{2N_c} \sum_{p} \left[\operatorname{tr} U_p + \operatorname{tr} U_p^{\dagger}\right] ,$

• parameters:

 $-\beta = \frac{2N_c}{q_0^2}$; $\kappa = \frac{1}{2(4+m_0)}$; bare gauge coupling g_0 and bare quark mass m_0 - number of lattice sites in τ direction N_{τ} ; lattice spacing a; temperature $T = \frac{1}{aN_{\tau}}$ • effective Polyakov loop action S_{eff} obtained from an integration of spatial links U_k :

Circumvent the sign problem: Numerical and analytic investigations of the effective theory

• sign problem: complex fermion determinant prevents lattice simulations at larger chemical potential

Non-perturbative effects from complex Langevin and standard MC simulations

• effective theory inherits only mild version of sign problem

- solution 1: standard MC simulations and reweighting
- solution 2: complex Langevin algorithm
- correctness criteria checked, consistent results

Isospin chemical potential

Bundesministerium

für Bildung

und Forschung

- $\mu_I = \mu_u = -\mu_d$
- pion condensation: $\mu_I = m_{\pi}/2$
- transitions coincide for static quarks: $m_B/3 = m_\pi/2$
- effect of quark interactions: gap between the two transitions

$$\exp[-S_{\text{eff}}] \equiv \int [dU_k] \exp\left[-S_g\right] \prod_{f=1}^{N_f} \det\left[Q^f\right]$$

• dimensional reduction from 3 + 1D to 3D $U_{\mu}(x,t) \rightarrow U_0(x) \rightarrow \text{Polyakov loops } L(x)$

 $L(\mathbf{x}) = \operatorname{Tr} W(\mathbf{x}) = \operatorname{Tr} \left[\prod_{\tau} U_0(\mathbf{x}, \tau)\right] = \mathcal{P} e^{ig \int_0^{\frac{1}{T}} d\tau A_0(\mathbf{x}, \tau)}$

• remaining path integral

 $Z = \int [dL] e^{-S_{\text{eff}}[L]}$

The strong coupling and hopping parameter expansion

Effective Yang-Mills action

Analytic expansion of the effective theory

• small effective couplings: perturbative expansion of effective theory • expansion parameter: effective coupling λ_1 and κ^2 two quark line interaction

Nuclear liquid gas transitions in the heavy dense regime of QCD

• $\mu_B \approx m_B$ baryons are excited (step function at T = 0)

• saturation at large μ : lattice Pauli exclusion principle

First studies beyond the heavy mass regime

- $N_{\tau} = 500, \ \kappa = 0.12 \qquad \qquad N_{\tau} = 250, \ \kappa = 0.12$ at large quark masses, higher temperatures: onset transition is a smooth crossover
- at lower masses, lower temperatures: transition becomes first order
- \Rightarrow transition between crossover and first order correctly reproduced by effective theory
- conservative estimate of reliable region in current truncation: small difference between $O(\kappa^2)$ and $O(\kappa^4)$
- so far interesting parameters outside this region, but κ^4 approximation might still be reasonable

Conclusions and further directions

- systematic derivation of effective Polyakov loop theory by a combined strong coupling and hopping parameter expansion
- useful tool at finite chemical potential, "solution" to the sign problem

- $S_{\text{eff}} = \lambda_1 S_{\text{nearest neighbors}} + \lambda_2 S_{\text{next to nearest neighbors}} + \dots$
- strong coupling expansion parameter $u = \frac{\beta}{18} + \ldots < 1$
- ordering principle for the interactions: higher representations and long distances are suppressed ($\lambda_1 = O(u^{N_\tau}), \lambda_2 = O(u^{2N_\tau})$)
- strong coupling approach suggests logarithmic form of the nearest neighbor interactions

 $e^{-S_{\text{eff}}} \approx \prod_{\langle i,j \rangle \text{ nearest n.}} \left(1 + 2\lambda_1 \operatorname{Re}\left(L_i L_j^{\dagger}\right) \right)$

Effective quark action

• Wilson-Dirac operator: $Q = 1 - \kappa H[U]$ in quark action

 $S_q = -N_f \operatorname{Tr} \log(1 - \kappa H) = N_f \sum_l \frac{\kappa^l}{l} \operatorname{Tr} H^l$

• expansion around heavy quark limit, $\kappa = \frac{1}{2(4+m_0)} \ll 1$ • static quarks: only propagation in τ direction \Rightarrow Polyakov loop L

$$\det(1+T^-+T^+) = \prod_n (1+cL_n+c^2L_n^\dagger+c^3)^2(1+\bar{c}L_n^\dagger+\bar{c}^2L_n+\bar{c}^3)^2$$

• higher orders: spatial propagation \Rightarrow non-trivial interactions of Polyakov loops e. g.

- chemical potential μ
- quarks $L(T^+)$ get factors $e^{a\mu}$: $c = (2\kappa e^{a\mu})^{N_\tau}$

• onset below $\mu_B = m_B$ due to nuclear binding energy

• energy density: e

• binding energy per nucleon: $\epsilon = \frac{e - n_B m_B}{n_B m_B}$ • effect of attractive quark-quark interaction: ϵ negative, decreases with meson mass

Convergence and continuum limit

- estimate truncation error: compare κ^2 and κ^4 results • continuum limit $a \to 0$ at fixed $\frac{m_B}{T}$ and $T = \frac{1}{aN_T}$ requires larger values of κ
- combined error: truncation error and uncertainty of continuum extrapolation
- lattice saturation leads to larger error in the high density region

• heavy dense low temperature regime: effective theory reproduces the features of full QCD

Improvements of the effective action: **Yang-Mills contribution**

- outside heavy dense low temperature regime: gluonic interactions become relevant
- \Rightarrow need further improvements of effective theory
- in confined region: ordering principle of effective couplings suggested by strong coupling still valid
- improvement of the effective couplings: include non-perturbative input form simulations of full theory

Improvements of the effective action: quark contribution

- interesting for QCD: lower mass
- higher orders in the κ expansion necessary
- investigations of relevant gluon-quark interactions at higher temperatures

Further investigations

• further investigations of validity outside the heavy dense low temperature regime

References

[1] J. Langelage, M. Neuman and O. Philipsen, arXiv:1403.4162 [hep-lat]. [2] G. Bergner, J. Langelage and O. Philipsen, arXiv:1312.7823 [hep-lat].

• anti-quarks $L^{\dagger}(T^{-})$ get factors $e^{-a\mu}$: $\bar{c} = (2\kappa e^{-a\mu})^{N_{\tau}}$ \Rightarrow interactions up to $\kappa^n + u^m$, m + n = 4 included

Low temperature limit in the heavy dense regime

• low temperature: N_{τ} large

• heavy: $\kappa \ll 1$

• dense: $2\kappa e^{a\mu} \approx 1$; $\bar{c} \approx 0$

 \Rightarrow dominated by short range quark line interactions

• heavy quark limit: small binding energy, smooth crossover

[3] J. Langelage, S. Lottini and O. Philipsen, JHEP 1102 (2011) 057 [Erratum-ibid. 1107 (2011) 014] [arXiv:1010.0951 [hep-lat]].

[4] M. Fromm, J. Langelage, S. Lottini, M. Neuman and O. Philipsen, arXiv:1207.3005 [hep-lat]. [5] C. Wozar, T. Kaestner, A. Wipf and T. Heinzl, Phys. Rev. D 76 (2007) 085004 [arXiv:0704.2570 [hep-lat]].

[6] J. Greensite and K. Langfeld, arXiv:1301.4977 [hep-lat].

[7] R. De Pietri, A. Feo, E. Seiler and I. -O. Stamatescu, Phys. Rev. D 76 (2007) 114501 [arXiv:0705.3420 [hep-lat]].