Feasibility study for the measurement of the elliptic flow of electrons from beauty hadron decays in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV with ALICE

Heavy-flavour production
- Heavy quarks, charm and beauty: produced in the initial stage of the collision via hard parton scattering processes.
- Experience the full evolution of the system.
- Well suited probe of the medium created in heavy-ion collisions at high energy (Quark-Gluon Plasma).
- Measure heavy-flavour hadrons and heavy-flavour decay leptons.

Heavy-flavour hadron decay v_2 with ALICE
- The azimuthal distribution of heavy-flavour decay electrons is given by:
 \[\frac{dN_{HF}}{d(\phi - \Psi_{RP})} = \frac{dN^{ee}}{d(\phi - \Psi_{RP})} + \frac{dN^v}{d(\phi - \Psi_{RP})} \]
 where N^{HF} is the number of heavy-flavour decay electrons, N^{ee} is the number of electrons from charm decays, and N^v is the number of electrons from beauty decays.
- If we assume that v_2 is the dominant term of the Fourier series, the v_2 of electrons from flavour decays is expressed as:
 \[v_2^{HF} = \frac{v_{HF}^{ee} - (1 - R)v_{HF}^{v}}{R} \]
 where R is the ratio of electron yields from beauty-hadron decays to the electron yields from inclusive heavy-flavour hadron decays.
- The ratio of electron yields from beauty-hadron decays to the electron yields from inclusive heavy-flavour hadron decays has been measured in pp collisions at $\sqrt{s}=2.76$ TeV by the ALICE collaboration [4].

Elliptic azimuthal anisotropy (v_2)
- If there is sufficient rescattering of heavy quarks with the medium:
 \[\frac{dN}{d(\phi - \Psi_{RP})} = \frac{1}{2}\left\{ 1 + \sum_{n=1}^{\infty} 2n_{0n} \cos n(\phi - \Psi_{RP}) \right\} \]
 where ϕ is the particle azimuthal angle, Ψ_{RP} is the reaction-plane angle, and n_{0n} is the azimuthal anisotropy magnitude of the n-th harmonic [1].

Feasibility study for the measurement of the beauty decay electron v_2
- The charm decay electron v_2 is evaluated with a Monte Carlo simulation taking as input:
 - Measured prompt D meson average v_2 in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV [2], which is represented by the black horizontal lines in the figure.
 - p_T distribution of D meson in pp collisions from FONLL calculations [5] scaled to Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV using D meson R_{AA} from BAMPS model [6].
 - The Pythia 6 event generator is used to decay D mesons into electrons.

Conclusions
- We presented a way to subtract the contribution of the charm decay electron v_2 from the heavy-flavour decay electron v_2.
- The significant increase of the luminosity at the LHC, as well as the ALICE detector upgrades, will increase the potential of this analysis.

References