

Qualitative extraction of qhat from combined jet quenching at RHIC and LHC

Xin-Nian Wang Central China Normal University / Lawrence Berkeley National Lab

Jet Quenching at RHIC & LHC

Jet Quenching at RHIC & LHC

Properties of QGP

Space-time profile:

 $T_{\mu\nu}(x):T(x),u(x)$

• EOS:

$$T_{\mu\nu} \iff \epsilon, P, s, c_s^2 = \partial p / \partial \epsilon$$

• Bulk transport:

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt dx e^{i\omega t} \langle [T_{xy}(0), T_{xy}(x)] \rangle$$

EM response:

$$W_{\mu\nu}(q) = \int \frac{d^4x}{4\pi} e^{iq \cdot x} \langle j_{\mu}(0) j_{\nu}(x) \rangle$$

• Jet transport: $\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int \frac{dy^-}{\pi} \langle F^{\sigma+}(0) F^+_{\sigma}(y) \rangle$

Parton scattering in medium

$$f_A^q(x,\vec{k}_\perp) = \int \frac{dy^-}{4\pi} \frac{d^2 y_\perp}{(2\pi)^2} e^{ixp^+y^- - i\vec{k}_\perp \cdot \vec{y}_\perp} \langle A|\bar{\psi}(0)\gamma^+ \mathcal{L}(0,y)\psi(y)|A\rangle$$

For an on-shell quark

$$f(\vec{k}_{\perp}, L) = \int d^2 y_{\perp} e^{-i\vec{k}_{\perp} \cdot \vec{y}_{\perp}} f(y_{\perp}, L)$$

$$f(y_{\perp}, L) = \frac{1}{N_c} \operatorname{Tr} \langle \mathcal{L}(0, L^-, \vec{y}_{\perp}) \rangle$$

$$\vec{W}_{\perp}(y^-, \vec{y}_{\perp}) \equiv i\vec{D}_{\perp}(y) + g \int_{-\infty}^{y^-} d\xi^- \vec{F}_{+\perp}(\xi^-, y_{\perp})$$

Jet transport operator due to color Lorentz force

Liang, XNW & Zhou (2008)

$$f^{q}_{A}(x, \vec{k}_{\perp}) = \int rac{dy^{-}}{4\pi} e^{ixp^{+}y^{-}} \langle A | ar{\psi}(0) \gamma^{+} \exp[ec{W}_{\perp}(y^{-}) \cdot
abla_{k_{\perp}}] \psi(y^{-}) | A
angle \delta^{(2)}(ec{k}_{\perp})$$

p_T broadening and jet transport

$$f_A^q(x,\vec{k}_\perp) \approx \frac{A}{\pi\Delta} \int d^2 q_\perp \exp\left[-\frac{(\vec{k}_\perp - \vec{q}_\perp)^2}{L\hat{q}}\right] f_N^q(x,\vec{q}_\perp)$$

$$\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int \frac{dy^-}{\pi} \langle F^{\sigma+}(0) F^+_{\sigma}(y) \rangle = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho_A x G_N(x)|_{x \to 0}$$

$$\langle \Delta k_{\perp}^2 \rangle = \int d\xi^- \hat{q}(\xi)$$

Cold nuclear matter:

 \hat{q}_{I}

....

$$_{V}pprox 0.02~{
m GeV}^2/fm$$

Consistent with value from jet quenching in DIS: Deng & XNW, PRC83(2010)024902; Chang, Deng & XNW, PRC89(2014) 034911 lmì

Hard and soft probes

JET Collaboration

http://jet.lbl.gov

M. Gyulassy (Columbia Univ) P. Romatschke (Univ of Colorado) S. Bass, B. Mueller (Duke Univ) M. Strickland (Kent State Univ) X.-N. Wang (LBNL) R. Vogt (LLNL) I. Vitev (LANL) C. Gale, S. Jeon (McGill Univ) U. Heinz (Ohio State Univ) D. Molnar (Purdue Univ) R. Fries, C. Ko (Texas A & M Univ) A. Majumder (Wayne State Univ)

Jet quenching phenomenology

3+1D hydro + Jet transport + Hadronization

- A general framework for numerical implementation of different approaches & improvement of jet transport
- Hadronization: fragmentation & recombination

- Realistic bulk evolutions: e-by-e 3(2)+1 hydro : constrained by bulk hadron spectra, v_n
 - iEBE: E-by-E viscous hydro- generating bulk medium on-demand
 - First JET package: viscous hydro+ semi-analytic jet quenching: CUJET, McGill-AMY, MARTINI-AMY, HT-BW, HT-M (will expand to other models)

Parton energy loss in Medium

(BDMPS'96)

 $\mu \approx gT$

00

rung

cuts pinching

Arnold, Moor, Yaffe (AMY'01): DS eqs. McGill-AMY: coupled rate equations

Gyulassy-Levai-Vitev (GLV'00): Opacity expansion

$$\hat{q} = \int d^2 q_{\perp} \langle \rho \frac{d\sigma}{d^2 q_{\perp}} \rangle q_{\perp}^2 \qquad \qquad \frac{dN_g}{dx d^2 k_{\perp}} (T, \mu_D^2, I)$$

Rate \propto

High-twist approach: Modified frag. Func.

Guo & XNW'00, Zhang, Wang, XNW'03

6 : Hard Thermal Loop

 $\Delta E \approx \frac{\alpha_s N_c}{1} \hat{q} L^2$

$$\frac{\Delta E}{E} = \frac{2\alpha_s N_c}{\pi} \int \frac{d\ell_T^2}{\ell_\perp^4} dz [1 + (1 - z)^2] \int d\xi^- \hat{q}(\xi) \sin^2(x_L p^+ \xi^-)$$

McGill-AMY, MARTINI-AMY, CUJET, HT-BW, HT-M, JEWEL, JaYEM, PCM, BAMPS

Jet quenching phenomenology

McGill-AMY

60

p_ (GeV)

11

Jet quenching phenomenology

Jet transport coefficient

JET Collaboration: arXiv:1312.5003

Jet transport coefficient

JET Collaboration: arXiv:1312.5003

Jet transport coefficient

Future: dihadron, gamma-hadron, flavor dependence, jet observables RHIC BES and LHC higher energy

NLO and factorization

arXiv:1106.1106

۲

Uncertainty in scale dependence of collinear LO results Medium properties & hard scattering factorizable?

- Complete cancellation of soft-collinear divergence
- Complete factorization of the collinear divergence

 $\hat{q} \Longrightarrow \hat{q}(E,Q^2)$

Hongxi Xing (Wed.)

 $\frac{d\langle k_{\perp}^2 \sigma \rangle_{\text{NLO}}}{dz_h} = \sigma_0 D_h(z, \mu_f^2) \otimes H_{\text{NLO}}(x, x_B, Q^2, \mu_f^2) \otimes T_{qg}(x, x_1, x_2, \mu_f^2)$

$$\frac{\partial}{\partial \ln \mu_f^2} T_{qg}(x_B, 0, 0, \mu_f^2) = \frac{\alpha_s}{2\pi} \int_{x_B}^1 \frac{dx}{x} \left[\mathcal{P}_{qg \to qg} \otimes T_{qg} + P_{qg}(\hat{x}) T_{gg}(x, 0, 0, \mu_f^2) \right].$$

Mehta-Tani (Wed.)

Summary

First step towards quantitative extraction of qhat from combined jet quenching at RHIC and LHC

Future: mapping out energy and T-dependence at RHIC & LHC

Broadening of γ-hadron correlation

Jet azimuthal angle broadening is smaller but still finite

Li, Liu, Ma, XNW and Zhu, PRL 106 (2010) 012301 Ma and XNW, PRL 106 (2011) 162301

Linear Boltzmann jet transport

$$p_{1} \cdot \partial f_{1}(p_{1}) = -\int dp_{2}dp_{3}dp_{4}(f_{1}f_{2} - f_{3}f_{4}) |M_{12 \to 34}|^{2} (2\pi)^{4} \delta^{4}(\sum_{i} p_{i}),$$

$$f_{i}(p) = (2\pi)^{3} \delta^{3}(\vec{p}_{i} - \vec{p}_{0}) \delta^{3}(\vec{x} - \vec{x}_{0} - t\vec{v}_{i})[i = 1, 3]$$

$$f_{i}(p_{i}) = \frac{1}{e^{p_{i} \cdot u/T} \pm 1} (i = 2, 4)$$

$$\frac{d\sigma}{dt} = |M_{12 \to 34}| / 16\pi^{2} s^{2} \qquad \mu_{D}^{2} = (\frac{3}{2}) 4\pi \alpha_{s} T^{2}$$
Induced radiation
$$\frac{dN_{g}}{dzd^{2}k_{\perp}dt} = \frac{2\alpha_{s}N_{c}}{\pi k_{\perp}^{4}} P(z)(\hat{p} \cdot u)\hat{q} \sin^{2}(\frac{t - t_{0}}{2\tau_{f}})$$

Li, Liu, Ma, XNW and Zhu, PRL 106 (2010) 012301 XNW and Zhu, PRL 111 (2013) 062301

Jet-induced medium excitation

.....

22

Effect of recoils and jet broadening

XNW and Zhu, PRL 111 (2014) 062301

Li, Liu, Ma, XNW and Zhu (2010 Ma and XNW (2011)

Talk by: Tan Luo (Wed.),

Broadening of jet transv. profile

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N^{\text{jet}}} \sum_{\text{jets}} \frac{p_T(r - \Delta r/2, r + \Delta r/2)}{p_T(0, R)}$$

R=0.3

Medium mod. of frag function

XNW and Zhu, PRL 111(2013)062301

XNW, Huang & Sarcevic (1996)

Energy of reconstructed jet dominated by leading particle Suppression of fragmentation functions relative to initial energy

Factorization at twist-4

 Transverse momentum square weighted cross section

$$\frac{d\langle \ell_{hT}^{2}\sigma\rangle}{dz_{h}} = \sigma_{0}\int_{z_{h}}^{1}\frac{dz}{z}D_{q/h}(z,\mu^{2})\int_{x_{B}}^{1}\frac{dx}{x}T_{F}(x,0,0,\mu^{2})\delta(1-\hat{x})\delta(1-\hat{z}) \longrightarrow \mathsf{T-4 LO}
+ \sigma_{0}\frac{\alpha_{s}}{2\pi}\int_{z_{h}}^{1}\frac{dz}{z}D_{q/h}(z,\mu^{2})\int_{x_{B}}^{1}\frac{dx}{x}\left\{\ln\left(\frac{Q^{2}}{\mu^{2}}\right)\left[\left(\delta(1-\hat{x})P_{qq}(\hat{z})+\delta(1-\hat{z})P_{qq}(\hat{x})\right)T_{F}(x,0,0,\mu^{2})\right)\right. \\ \left.+ \delta(1-\hat{z})P_{qg\to qg}(\hat{x})\otimes T_{F}(x,x,x_{B},\mu^{2})\right] + \left(F^{C}(\hat{x},\hat{z})+F^{A}(\hat{x},\hat{z})\right)\otimes T_{F}(x,x,x_{B},\mu^{2})\right\}$$

T-4 NLO

Finite contribution from asymmetric-cut diagrams

$$\begin{aligned} F^{A}(\hat{x},\hat{z}) \otimes T_{F}(x,x,x_{B},\mu^{2}) \\ &= -\frac{C_{A}}{2}\delta(1-\hat{z})\frac{1+\hat{x}}{(1-\hat{x})_{+}}\left[T^{L}(x,0,x_{B}-x,\mu^{2}) - T^{R}(x_{B},0,x-x_{B},\mu^{2}) - T^{L}(x,x_{B}-x,x_{B}-x,\mu^{2}) + T^{R}(x_{B},x_{B},x_{B},x_{B},x_{B},x_{B},\mu^{2}) \right] \\ &- \delta(1-\hat{x})\frac{1+\hat{z}^{2}}{\hat{z}^{2}}(1+\hat{z})C_{A}\left[T^{L}(x,0,0,\mu^{2}) + T^{R}(x,0,0,\mu^{2})\right] \\ &- \left[C_{F}(1-\hat{z}) + \frac{C_{A}}{2}\hat{z}\right]\frac{1+\hat{x}\hat{z}^{2}}{\hat{z}^{2}}x\left[\frac{dT^{L}(x,x_{2},x_{B}-x,\mu^{2})}{dx_{2}}\Big|_{x_{2}=0} + \frac{dT^{R}(x_{B},x_{2},x-x_{B},\mu^{2})}{dx_{2}}\Big|_{x_{2}=x-x_{B}}\right] \end{aligned}$$

Evolution equation for T4 - NEW

soft-soft

hard-hard & soft-hard & hard-soft

$$P_{qg \to qg}(\hat{x}) \otimes T_F(x, x, x_B) = C_A \left[\frac{2}{(1 - \hat{x})_+} T(x_B, x - x_B, x) - \frac{1}{2} \frac{1 + \hat{x}}{(1 - \hat{x})_+} \left(T(x, 0, x_B - x) + T(x_B, x - x_B, x - x_B) \right) \right]$$

When $\hat{x} \rightarrow$, there is no phase space for the gluon radiation from the initial gluon.

Running coupling in jet quenching

響の

Collaboration

29

McGill-AMY

- PHENIX 08+12 • CMS (0-5%) **PHENIX 08+12** ····· CMS+ALICE * Alice (0-5%) **CMS+ALICE** 0.8 $\hat{q}_{o}(RHIC) = \hat{q}_{o}(LHC)/2$ $\hat{q}_{0}=2.0, 2.4, 2.8, 3.2,$ 0 χ^{2/d.o.f} 0.6 Ч Ч 2 HT-BW ²/d.o.f. 0 2 2.5 3 ĝ GeV²/fm (LHC) 3.5 30 10 20 40 p_ 0 ALICE 0-5% CMS 0-5% 0.8 $\hat{q}_0 = 1.4 \text{ GeV}^2/\text{fm}$ 0.31 ^{°,3} 0.6 R_{AA} 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 HT-M α ALICE+CMS 0-5% PHENIX 0-5% 2012 - L 10 15 0.5 1 ${\stackrel{1.5}{\hat{q}_{0}}}^{2}_{0} ({\stackrel{2.5}{GeV}}^{2}/{fm})$ 3.5 3 20 40 60 80 100 \mathbf{p}_{T} p_T

