
 
 
•  Finite-acceptance effects in pair measurements are 

more complicated than the effects in single particle 
measurements. 

•  Example in 1D (acceptance [-a, a] in x) 

•  Finite-acceptance effects in two-particle correlation 
analysis mean that pairs are not counted depending 
on the correlated particle positions, and we need to 
correct for those missing pairs. 

•  Current per-trigger associated particle yield is 
divided by normalized mixed-event function for 
finite-acceptance correction, but this procedure 
produces a ratio function instead of working as a 
correction.  

•  Correlation functions or per-trigger associated 
particle yields have two dimensions, (Δφ, Δη), but 
we assume full azimuthal acceptance for the 
detector in this study è Dimension of finite 
acceptance correction is 1, only in Δη. 

•  If yields or Δφ-projections are considered in the 
analysis, ratio function might produce different 
results from the intended per-trigger associated 
particle yields. 

Finite-acceptance Effects 

 

•  Correlation function shapes from p-p collisions are generally 
dominated by di-jet signals.  

•  If η-acceptance is [-2, 2],  

•  If η-acceptance is [0, 4],  
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Correction Methods for Finite-acceptance Effects  
in Two-particle Correlation Analysis 

 
 
•  Two-particle pair-wise correlation analysis is based 

on the simultaneous measurement of pairs of 
particles in each event.  

•  Single and pair densities: 

                                    ,                               , 

 

•  Current definition of the correlation function: 

•  Experimentally,  

 è it is roughly equivalent to the ratio between 
        correlated production and uncorrelated 
        production. 
 

Introduction 
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We apply the new methods onto the Monte Carlo (MC) simulations to check their validity. In the MC simulations, 
we could detect every η of emitted particles, and control the acceptance range freely. 

 

•  Collective Toy MC simulation with Δη-dependent v2 

•  Correlation function’s yield at each Δη-bin works as 
weighting factor in Δφ-projection. Integrated v2, which is 
evaluated after Δφ-projection, depends on correlation 
function yields if v2 is dependent on Δη. 
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•  The current finite-acceptance correction method 
produces a ratio function (=correlated/uncorrelated).  

•  New methods are developed and tested with the MC 
simulations, and they 
ü  analytically work for specific cases, (constant trigger 

location distribution over all events or delta-function-like 
trigger distribution …) 

ü  work as approximation in other cases. 

•  Analysis concerning yields or Δφ-projection largely 
depend on finite-acceptance correction method. 

Conclusion 
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•  Modeling particle correlations in a jet which 
correspond to near-side jet structure,  

                                                                            , 

                                                  

ü       : Common reference point of trigger and associated 
particle distributions in each event (=jet-axis) 

ü                 : Trigger-particle distribution in a single event with 
respect to  

ü                 : Associated particle distribution in a single event, 
with respect to  

ü            : Each event has      value, and           represents the 
distribution of X over all events 

ü                if                    and               if others 

•  We can find analytic formulas in certain cases.  

   è 
             
Ø  If         is constant, 

Ø  If               is a delta-function,(=jet-shape for asso. particles) 

•  Modeling away-side structure in di-jet events,  

Ø  If                        , (pair density depends only on the 
distance between two jets) 

•  There is no general formula which can always 
connect                 and          . But above methods 
can work as approximate formulas and their validities 
depend on the signal type.  

New Method Derivation 
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The present work addresses concern over the validity of the 
standard mixed-event method for correcting two-particle 
correlations.1),2) New methods for finite-acceptance correction 
are developed and tested in Monte Carlo simulations.  
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