- Finite-acceptance effects in pair measurements are more complicated than the effects in single particle measurements.
- Example in 1D (acceptance [-a, a] in x)

- Finite-acceptance effects in two-particle correlation analysis mean that pairs are not counted depending on the correlated particle positions, and we need to correct for those missing pairs.
- Current per-trigger associated particle yield is

- Correlation functions or per-trigger associated particle yields have two dimensions, (Δφ, Δη), but we assume full azimuthal acceptance for the detector in this study \rightarrow Dimension of finite acceptance correction is 1, only in Δη.
- If yields or $\Delta\varphi$ -projections are considered in the analysis, ratio function might produce different results from the intended per-trigger associated particle yields.

function yields if v_2 is dependent on Δ η.

divided by normalized mixed-event function for finite-acceptance correction, but this procedure produces a ratio function instead of working as a correction.

Saehanseul Oh¹, Tim Schuster¹, Andreas Morsch², Constantinos Loizides³ *1Yale University, USA, 2CERN, Switzerland, 3Lawrence Berkeley National Laboratory, USA*

- Two-particle pair-wise correlation analysis is based on the simultaneous measurement of pairs of particles in each event.
- Single and pair densities:
	- d^2N_t
- $d^2N_{\scriptscriptstyle a}$

Finite-acceptance Effects

• Correlation function shapes from p-p collisions are generally dominated by di-jet signals.

 \rightarrow it is roughly equivalent to the ratio between correlated production and uncorrelated production.

- $1 \frac{d^2 N_{\text{assoc.}}}$ $N_{_{trig}}$ $d\Delta\varphi d\Delta\eta$ 19.6 ηΔassoc ηΔassoc p *N*p ϕΔ19.4 15 *N*ϕΔ**2** ರ ರ **2** ರ ರ trig 19.2 14 trig $\mathbf -$ *N* $\mathbf -$ *N*19 13 18.8 12 18.6 11 18.4 10 4 $\mathcal{H}_{\bm{\mathcal{D}}}$ 4 3 খ $_{2}$ 3 2 $\Delta \eta$ 2 1 1 Δφ 0 $\begin{array}{ccc} 1 & 0 & 1 \\ -1 & 0 & 2 \end{array}$ 4 Δφ 0 1 0 1 2 3 4 -1 -1 -2 ${\cal C}_{trig,R}$ -2 -3 $\Delta \varphi$ -3 -4 *Cideal* $\overline{4}$ ηΔηΔassoc assoc 21 20.5 p d *NN*ϕΔϕΔ71 71 20 20 ರ ರ ರ ರ trig trig $\mathbf \mathbf -$ *N*19.5 *N*19 19 18 18.5 17 18 16 17.5 4 4 ધ $_{\gamma}$ $\mathcal{H}_{\bm{\mathcal{D}}}$ 3 3 2 2 1 1 Δφ Δφ 0 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{4}{3}$ 0 $\frac{1}{2}$ 4 -1 -1 $C_{Method1}$ ² ³ $\frac{1}{2}$ ² ² $Method$ </sup> -2 -2 -3 -3 -4 -4 ่ v0.12 $v_2(\Delta \eta)$ 0.1 0.08 0.06 0.04 0.02 Ideal 0 $-Mix$ Method1 -0.02 -4 -3 -2 -1 0 1 2 3 4 Δη • Correlation function's yield at each Δη-bin works as
	- weighting factor in $\Delta\varphi$ -projection. Integrated v_2 , which is evaluated after Δφ-projection, depends on correlation

Correction Methods for Finite-acceptance Effects in Two-particle Correlation Analysis

- The current finite-acceptance correction method produces a ratio function (=correlated/uncorrelated).
- New methods are developed and tested with the MC simulations, and they
	- \checkmark analytically work for specific cases, (constant trigger location distribution over all events or delta-function-like trigger distribution …)
	- \checkmark work as approximation in other cases.
- Analysis concerning yields or Δφ-projection largely depend on finite-acceptance correction method.

• Current definition of the correlation function:

 $C_{2,R}(\eta_a, \eta_t; \varphi_a, \varphi_t) =$ $\rho_{_{a,t}}(\eta_{_a},\varphi_{_a};\eta_{_t},\varphi_{_t})$ $\rho_{_a}(\eta_{_a}, \varphi_{_a})\rho_{_t}(\eta_{_t}, \varphi_{_t})$ -1

• Experimentally,

Introduction

- \checkmark $f_a(x-X)$: Associated particle distribution in a single event, with respect to $x = X$
- \checkmark $g(X)$: Each event has X value, and $g(X)$ represents the distribution of X over all events
- $C_{ideal}(\Delta x) =$ 1 $N_{\it trig, ideal}$ $\int dX \int dY \int dx (g(X,Y)f_a(x-X)f_t(x-Y+\Delta x))$ + 1 $N_{\it trig, ideal}$ $\int dX \int dY \int dx (g(X,Y)f_t(x-X+\Delta x)f_a(x-Y))$
- \triangleright If $g(X,Y) = g(X-Y)$, (pair density depends only on the distance between two jets)

 $\alpha(\Delta x) =$ 1 $\frac{1}{2a} \int A(x)A(x+\Delta x)dx$ Same as Method 1

$$
C_{trig,R}(\Delta \varphi, \Delta \eta) = \frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d \Delta \varphi d \Delta \eta} = B(0,0) \frac{S(\Delta \varphi, \Delta \eta)}{B(\Delta \varphi, \Delta \eta)}
$$

We apply the new methods onto the Monte Carlo (MC) simulations to check their validity. In the MC simulations, we could detect every η of emitted particles, and control the acceptance range freely.

1) L. Xu, C.-H. Chen, and F. Wang, Phys. Rev. C88 (2013) 064907 2) S. Ravan, P. Pujahari, S. Prasad, and C. A. Pruneau, Phys. Rev. C89 (2014) 024906 saehanseul.oh@yale.edu

PYTHIA Simulation Collective MC Simulation

Collective Toy MC simulation with Δn -dependent v_2

Conclusion

• Modeling particle correlations in a jet which correspond to near-side jet structure,

If we have an infinite acceptance

• We can find analytic formulas in certain cases.

Yale

 $\sqrt{11111}$

$$
C_{ideal}(\Delta x) = \frac{1}{N_{trig, ideal}} \int dX \int dx \left(g(X) f_a(x - X) f_t(x - X + \Delta x)\right) ,
$$

 $N_{trig, ideal} = \int dX \int dx (g(X)f_t(x-X))$

- \checkmark x : Common reference point of trigger and associated particle distributions in each event (=jet-axis)
- \checkmark $f_t(x-X)$: Trigger-particle distribution in a single event with respect to $x = X$

• There is no general formula which can always connect $C_{ideal}(\Delta x)$ and $C(\Delta x)$. But above methods can work as approximate formulas and their validities depend on the signal type.

$$
C_{ideal}(\Delta x) = \alpha(\Delta x)C(\Delta x)
$$

New Method Derivation

$$
\triangleright \text{ If } g(X) \text{ is constant,}
$$

$$
\alpha(\Delta x) = \frac{1}{2a} \int A(x)A(x + \Delta x) dx \text{ Method 1}
$$

 \triangleright **If** $f_t(x-X)$ is a delta-function, (=jet-shape for asso. particles)

If we have a finite acceptance

$$
\alpha(\Delta x) = \frac{1}{N_{trig}} \int A(x) n_{trig}(x + \Delta x) A(x + \Delta x) dx
$$
 Method 2

Modeling away-side structure in di-jet events,

$$
C(\Delta x) = \frac{1}{N_{trig}} \int dX \int dx \left(g(X) f_a(x - X) f_t(x - X + \Delta x) A(x) A(x + \Delta x) \right)
$$

$$
N_{trig} = \int dX \int dx \left(g(X) f_t(x - X) A(x) \right)
$$

 \checkmark $A(x) = 1$ if $-a < x < a$ and $A(x) = 0$ if others

If we have an infinite acceptance

The present work addresses concern over the validity of the standard mixed-event method for correcting two-particle correlations.1),2) New methods for finite-acceptance correction are developed and tested in Monte Carlo simulations.

Abstract