DCA and secondary vertex measurement of electron pairs using PHENIX-VTX

XXIV
QUARK
MATTER
DARMSTADT
2014

Takashi HACHIYA for the PHENIX collaboration RIKEN NISHINA Center contact: hachiya@rcf.rhic.bnl.gov

Introduction

Heavy quark (charm and bottom) production is a powerful tool to study the property of QGP.

- Calibrated probe :
 - Heavy quark is mainly produced in the initial hard scattering.
 - Heavy quark production is calculable by perturbative QCD
 - their large mass (M_c~1.3GeV/c², M_b~4.2GeV/c²).
- Carrying QGP information :
 - Heavy quarks propagate through the QGP after the production
 - Modification of the yield and angler distribution is directly reflected by the property of QGP.
- Bottom and charm separation is important to study QGP in detail.
 - Observed strong suppression of heavy quarks is not well understood.

- Secondary J/ψ as a probe
 - B \rightarrow J/ ψ +X \rightarrow e+ + e-
 - This is a direct measurement of B meson production.
 - Bottom and charm contributions needs to be separated in single electrons from heavy quark decays.
 - It is challenging to extract the signal
 - Branching ratio (B \rightarrow J/ ψ) is small (~1%)
 - Main background is prompt J/ ψ that comes from the collision vertex

Silicon Vertex Tracker (VTX)

- Structure: 4 layers of silicon detectors
 2 inner pixel and 2 outer stripixel layers
- Wide acceptance: $|\phi|^2\pi$, |y|<1.2
- Capabilities:
 - A precise tracking around the collision vertex
 - Collision vertex determination
- VTX archives 74μm DCA resolution for single electron measurement
 - Distance of Closest Approach (DCA) from collision vertex.

Secondary Vertex Reconstruction

- 1. e+e- pairs are measured by the central arm + VTX
 - VTX improves momentum resolution
- 2. Secondary vertex position is reconstructed
 - The position of closest approach for e+e- pairs

Feasibility test for secondary J/\pu measurement

Pseudo proper time (x)

the decay length ($c\tau$) of B using the J/ ψ

$$x = \frac{Lxy \cdot M_{J/\Psi}}{p_{T(J/\Psi)}} \sim c\tau(B)$$

: decay length of B meson

Lxy: projected length of L to J/ψ vector

 p_T : transverse momentum of J/ψ

 $M: J/\psi$ mass

Pseudo proper time distribution in simulation

Pseudo proper time (χ) is studied using simulation (PYTHIA + GEANT). x distribution is different for secondary and primary J/ψ

- Secondary J/ ψ is **asymmetric** and enhancement in positive side
- Prompt J/ψ is symmetric
 - \checkmark (c τ = 0 μ m) only detector resolution

Secondary J/ ψ can be extracted using pseudo proper time!

Data analysis

e+e- invariant mass in p+p 200GeV

• The invariant mass of e+e- pairs with and w/o VTX. J/ ψ peak is appeared when e+e- pairs are confirmed by VTX. VTX reduces the combinatorial background significantly.

Summary & Outlook

- Secondary J/ψ measurement via e+e- pairs is feasible
- Data analysis for p+p and Au+Au 200 GeV is in progress.
 - VTX reduces combinatorial background and improves the J/ ψ yield measurement
- High statistics Au+Au data is coming in run2014
 - Run2014 is going smoothly and the integrated luminosity will be twice than the plan.
 - Expected yield of secondary J/ψ
 - Number of J/ψ is 10000 @ 10 billion minimum bias data in Au+Au 200GeV
 - J/ψ yield in p+p 200GeV
 - Secondary J/ ψ : $\sigma_{b \to I/\Psi \to e^+e^-} = 1.2$ nb (PRL.103.082002 PHENIX)
 - Prompt J/ ψ : $\sigma_{J/\Psi \to e^+e^-}$ = 45 nb (PRL. 98, 232002 PHENIX)
 - Production ratio: 2.6% in p+p, 5.2% in Au+Au
 - Prompt J/psi yield in Au+Au is suppressed 50%
 - The expected secondary J/ ψ is 100~200 in Au+Au 200GeV (including VTX efficiency)