
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

o  Gauge fields obey periodic boundary condition  

o  Action is invariant under gauge transformation 

o  Gauge transformations are also periodic   

o  Extra symmetry of the theory        

o  Where Z(N) is the centre group of SU(N).  (ZU = UZ) 

o  Finite temperature SU(N) gauge theory has Z(N) symmetry as the Euclidean action is 
invariant under Z(N) transformation. 

o  Z(3) symmetry is restored below Tc in the confined phase and spontaneously broken in the 
deconfined phase giving rise to 3 Z(3) vacua.           

Conclusion 
o During quench, Z(3) domains are produced and coarsens in time with small explicit symmetry breaking. 
o Due to large explicit symmetry breaking, field roll down to true vacuum only and no Z(3) domains appear. 
o There are huge oscillations of the field and it would affect the flow anisotropy. 
o  Huge oscillations in flow anisotropy in quench case compared to equilibrium case.  
  So, effect of quench should be taken care of in hydrodynamic simulations. 
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Motivation : To study about non-trivial Z(3) vacuum structure, Z(3) domains and their 
consequences in QGP phase.    
Z(3) CENTER SYMMETRY OF QCD AND POLYAKOV LOOP ORDER PARAMETER 

o  Polyakov Loop Order Parameter : 

o  ΔF : change in free energy of the pure glue theory due to addition of an isolated quark 
o  Under Z(3) symmetry : 
o  In confined phase, Z(3) symmetry is restored corresponding to                   
o  In deconfined phase, Z(3) symmetry is spontaneously broken corresponding to finite  
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Effective potential based on Polyakov loop  
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o  Normalized such that             as                . With                   b3  gives               leading to Z(3)  
degenerate vacuum structure.  

o  Coefficients b2, b3, b4 are chosen to fit lattice results for energy density and pressure in 
pure SU(3) gauge  theory. 

∞→T

€ 

l = l e iθ ( )θ3cos

€ 

l0 →1

o  This potential represents a weakly first order 
phase transition with Tc =182 MeV. 

o  There are 3 degenerate vacua corresponding to 
the phases at θ =0, 2π/3, 4π/3. 
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Plot of  V(l) in θ = 0 direction  Plot of V(l) w.r.t θ  

o  Plots of V(l)  ( in units of 
Tc4 ) for T=185 MeV.  

o  Barrier vanishes at  
   T = 250 MeV 

Domain Growth during Quenched transition to QGP  
o  The phase transition can be viewed as a quench due to the early thermalization to a QGP state. 
o  The barrier between true vacuum and false vacuum (l = 0) vanishes at temperature above 250 

MeV.  
o  Quench the system from low temperature to high temperature (~ 400 MeV) in very short time 

(less than 1 fm), but the field still sits around l = 0 and just rolls down to true vacuum after 
that. Z(3) domains form and coarsens.   

Plot of V(l) in θ = 0 direction for T = 400MeV  
No barrier between true and false vacuum.  
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Numerical Techniques: 
o  We carry out 2+1 dimensional simulation of C-D phase transition as a quench. 

o  We use 2000X2000 lattice (physical size 20 fm).   

o  Quench the system from low temp to  400 MeV in 1 fm time and then the  temp decreases due 
to longitudinal expansion. 

o  Initial field configuration constitutes a small patch around l = 0.  

o  Field evolution is numerically implemented by a stabilized Leapfrog algorithm of 2nd order 
accuracy both in space and time.  
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Evolution of Z(3) Domains 

o  At τ = 1.2, 2.0, 2.4 and 2.8 fm respectively. Here  
Temp are 376, 317, 298 and 283 MeV and  
corresponding magnitudes of l are 0.04, 0.08, 0.2  
and 0.4 respectively.  
 
o  Small η/s due to small size of domains 
    (M Asakawa et al,PRL 110, 202301, 2013) 

Red            θ =0 vacuum 
Green         θ =2π/3 
Blue            θ =4π/3 

o   Z(N) symmetry is explicitly broken giving rise to one true vacuum and two meta stable 
     vacua in presence of quarks. 
o  The effect of explicit symmetry breaking is realized by adding a linear term in the  
    effective potential.          

Effect of Quarks 
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Shift of l = 0 vacuum   
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The false vacuum shifts by a small amount   ε= 0.0044  
For b1= 0.005 and T=190 MeV 
 
 Plot of V(l) in θ = 0 direction  

    Small vs large explicit symmetry breaking 
Small explicit symmetry breaking : Initial patch of l shifts towards θ =0 vacuum, still 
overlapping with the initial equilibrium value of l. l rolls down to every vacuum, but θ = 0 vacuum  
is more dominant. 
o Large explicit symmetry breaking : l shifts more towards θ = 0 vacuum, so initial patch rolls down 
entirely θ = 0  direction. No formation of Z(3) domains or interfaces or strings. 
o However, we see huge oscillations of the field before reaching to true vacuum. 
o This may affect elliptic flow anisotropy.          

Small explicit symmetry breaking :  
evolution of domains 

At τ = 1.2,1.6,2.0 and 2.4 fm (temp 376, 342, 
 317 and 298 MeV) respectively. 

θ = 0 domain is dominant compared to other 2 
domains  

Large explicit symmetry breaking :  
Huge oscillations of field 

Field rolls down everywhere towards θ = 0 
vacuum. Plots are at τ = 2.6, 3.6, 4.4 and 6.2 
fm respectively. Huge oscillations of field will 
affect flow anisotropy. 

Modeling of transverse expansion 
o  A study of momentum anisotropy development with (quench) and without (equilibrium) 

the presence of large oscillations of the order parameter field. 
o  Wood Saxon temp profile with X and Y elliptical shape for non central collision. 
o  Transverse size increases with uniform acceleration of 0.015c per fm. 
o  This expanding background of temp profile represents expanding QGP in which the 

evolution of the order parameter field is studied. 
o  Interpretation of the simulation is that we study long wavelength modes of l which are 

coupled to a background of short wavelength modes which are in thermal equilibrium. 
o  In case of equilibrium, the field sits at the vacuum expectation value.      

Elliptic flow anisotropy 
Spatial eccentricity 
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εx =
ρ(y 2 − x 2)dxdy∫
ρ(y 2 + x 2)∫ dxdy

o  Calculate T0x and T0y components of energy momentum tensor. 
o  Calculate θ = tan-1 (T0y /T0x ) and Net momentum density=Sqrt( T0x

2  +T0y
2   )       

o  Now calculate elliptic flow coefficient by Fourier expanding net momentum density 
    w.r.t θ.    
Ø  Quench case : initial elliptical shaped temp profile with eccentricity 0.5 

Corresponds to two  
different realizations  
of the initial random  
field configuration. 

Ø  Equilibrium case : initial elliptical shaped temp profile with eccentricity 0.5 

Initial value of εx= -0.14 

Domain Wall and String 

Plot of inverted potential –V (l )  in ( l1,l2 ) plane   

o  Domain walls are the solution while going from one vacuum to another vacuum.The solution (solid 
curve) can never go through origin i.e l is never zero inside the wall. The intersection of three 
different interfaces gives rise to string like structure.  

 

Surface plot of  -l  for two-dimensional lattice in x-y plane. 
String ( l =0 ) is attached to the three interfaces.  
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Partition function for a system of gluons in terms of path integral formalism 
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