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Motivation

e Large differences between the longitudinal and transverse expansion rates lead to large shear
viscous effects (longitudinal/transverse pressure anisotropies) in the early stage of heavy-ion
collisions.

e These cause Israel-Stewart theory to break down at early times.

e Anisotropic hydrodynamics (AHYDRO) deals with the large longitudinal/transverse pressure
anisotropy “nonperturbatively”; this improves the performance of hydrodynamics at early times.

e But: AHYDRO accounts for only one of the 5 independent components of the shear stress
tensor, ignoring the others = unreliable for the computation of elliptic flow which is sensitive
to " —7YY, for example.

e On the other hand: these 4 remaining components of the viscous stress tensor become never as
large as the longitudinal /transverse pressure difference (with smooth initial density profiles they
start out as zero, with fluctuating initial conditions they are initially small).

e —> Idea: treat large longitudinal/transverse pressure anisotropy “nonperturbatively” with
AHYDRO, add remaining viscus corrections “perturbatively” a la Israel-Stewart =—> VAHYDRO.

e Expect better performance at all times compared to both AHYDRO and Israel-Stewart theory.
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and pressure gradients are small

hydro equations remain structurally unchanged for strongly coupled systems

P00 (@.p) = Olar.p) = 200 foofr.p)~f(2.1))

7_1“e1($)
in relaxation time approximation (RTA)

For conformal systems 1y.1(x) = ¢/T'(x).

Macroscopic currents:
@) = [ f(p) = )
p

T (z) = / pt'p” f(z,p) = (p"p")

where
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Ideal fluid dynamics (I)

p-u(z) — p(x)
T (x) )

ldeal hydro <= f(x,p) = fiso(Z,0) = fiso (

(Locally isotropic momentum distribution, not necessarily exponential or in chemical equilibrium)

If not in chemical equilibrium, then 9,7" # 0.

If not exponential in (p-u(z)—p(x))/T(x), then C(x,p) # 0, but still [ p"C = 0 (energy-

momentum conservation).
For ideal hydro

Jia(w) = n(x) u*(z)

TH = e(z)u*(x)u”(z) — P(e(x)) A (z)

where A*Y = g* — ytu” = spatial projector in l.r.f.

Write
pﬂ — EU'UJ + p<ﬂ>

where F = u-p=energy in l.r.f., p'# = A*p, = spatial momentum in I.r.f.
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Ideal fluid dynamics (I1)

|deal hydro equations follow from

, Neq — N(T)
0, it =—4
luj 7_1“e1($)
0,T"" =0

which one can solve for n(x), e(x), u*(x).
Then T'(x), pu(z), P(x) follow from the EOS.

Note: if system is locally isotropic but not in chemical and thermal equilibrium, this can
be accounted for by non-equilibrium chemical potentials and a non-equilibrium pressure
in the EOS P(e,n) = P(T,u). In this case one sees non-zero entropy production
@LS“ ~ 1/7_rel 7& 0.
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Israel-Stewart viscous fluid dynamics (1)

f(ZC,p) — fiso (pU(?(;)’u(x)> + 5f<$,p)

Separation made unique by Landau matching:
First define l.r.f. by T""u, = eu” with u’u, =1 = fixes flow vector u*

Next, require

e(z) = eiso(T, ) = (E7) = (E%)iso(T, 1)
n(x) = niso(T, 1) = (£) = (E)iso(T, 1)

—  (E)s = (E?)s =0 = fixes T(z), u(x)

Viscous decomposition of j#, TH":

=gl 4 Vm Vi = <p<u>>5

T = Tj — TIAM + i M= =5 (P pay)50 ™ = (PP
Here A) = A1 AP with A" af = § (AFAY, + AV A" ) — LA AL,

— 7 = T} has 5 independent components (3 for (241)-d, 1 for (0+1)-d)

Altogether 9 viscous flow degrees of freedom.
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Israel-Stewart viscous fluid dynamics (1)

Israel-Stewart equations of motion for viscous pressures (Israel&Stewart 1979, Muronga 2002):
Define F' = DF = u0,F, 0 = 0-u, 0" = O HyV)

. 1 Tnut 1
Il = —— |11+ ¢0+ 1I¢TO =—— [+ 0
Tn[ oo+l M(QCT)] Tﬁ[ +eol,
7.T<'UJV> = A,UJJDﬂ_aB — _i ahY 2770“1/ + 7T'UJV77T({9 Twu“ = _i [7-‘-,&1/_277/0_#1/]
af T H 277T 7_7{(- ’

where 1), ( are shear and bulk viscosity (first order transp. coeffs.), 711, 7, are shear and
bulk pressure relaxation times (second order transp. coeffs.), and

7'1/-[ _ T1I ’ 7_7/7 _ Tr 7 C/ _ q ’ 77/ _ n
14+ o L4 vz 14+ o L+ vz
1
o= %CT@L (;‘;) > gme,
1 T ut 4
Y = EnT(’?M (277T> - §T7T9,

where the arrow indicates the conformal limit.
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Israel-Stewart viscous fluid dynamics (l11)

The Israel-Stewart equations are not the most general form of second order equations
of motion for the viscous pressures. For a complete set of second-order terms, together
with the associated transport coefficients computed from Boltzmann theory, see Denicol,
Molnar, Niemi, Rischke, EPJA 48 (2012) 170 (DMNR).

Problem with applying IS theory to heavy-ion collisions:
for early times, as 7 — 0,

2
20" = — (0% 4o¥Y) — 3
-

— very large viscous corrections! = 0 f no longer small.

This problem is caused by the rapid self-similar longitudinal expansion.
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Anisotropic hydrodynamics (AHYDRO) (I)
Martinez and Strickland 2009, 2010; Florkowski and Ryblewski 2010

A non-perturbative method to account for large shear viscous effects stemming from large difference

between longitudinal and transverse expansion rates.

f(z,p) = fiso \/pMHWA(:SV i = frs(z,p)

where =" (z) = u"(z)u” (z) + £(x) 2! () 2" x. (Romatschke&Strickland 2003)
3 flow and 3 “thermodynamic” parameters: v/ (x); A(x), p(x), £(x).

AHYDRO decomposition:
YA pr v v v
Jrs = NRsu”, Tts = ersufu” — PrA*Y 4 (Pp, — Pr)ztz",

where, for massless partons (m = 0), the effects of local momentum anisotropy can be factored out:

Nrs — <E>RS — RO(g)niso(Aa ﬁ)?
ers = (E>)rs = R(&)eiso (A, 1),
Pr = (pr ) rs = Rr.0(€) Puo(A, i).

(See paper for R-functions.) The isotropic pressure is obtained from a locally isotropic EOS,

PiSO(A /1) — ISO(GISO(A /1) niso(A la))
For massless noninteracting partons, P, (A, i) = %eis, (A, ii) independent of chemical composition.
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Anisotropic hydrodynamics (AHYDRO) (I1)

Martinez and Strickland 2009, 2010; Florkowski and Ryblewski 2010
If we want to compare AHYDRO with ideal and IS viscous hydro, we need to assign the locally anisotropic
system an appropriate temperature T'(x) = T(f(m),A(a:), /1(90)) and chemical potential p(x) =

,u(f(a:), A(x), ,a(a:)) and think of frs(&, A) as an expansion around the locally isotropic distribution
fiso(T"). This is done by “dynamical Landau matching”: We demand that ers(&, A, i) = eiso(T, 1)
and nRS(ga A7 ,EL) — RO(E)niSO(T7 ,LL)

For example, using a Boltzmann distribution for fis,(x, p) with u = & = 0, one finds (Martinez &
Strickland 2010)
T = ARY'(€)

With this matching we can write
Tts = Ty — (AP + Hrg) A" + g
where

1 af
AP+ Tigs = — /paA ps(frs — fo) (= 0 for m = 0),

p
xlx” + yHy” — 22127

3

Wﬁg — /p<upy>(fRS — fiso) — (PT—PL)
p

We see that wf{g has only one independent component, Pr— P, so AHYDRO leaves 4 of the 5

components of w"” unaccounted for.

U. Heinz Quark Matter 2014, 5/19/2014 9(18)



Anisotropic hydrodynamics (AHYDRO) (111)
Martinez and Strickland 2009, 2010; Florkowski and Ryblewski 2010

For massless particles we have

Pr— Py,
Piso(e)

= Rr(§) —RL(§),

so the EOM for 75 can be replaced by an EOM for &.

For m # 0, to separate AP from the viscous pressure II, we need an “anisotropic EOS”

for
AP 2P + Pr,

f)iso 3f)iso

1.
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Viscous anisotropic hydrodynamics (VAHYDRO) (1)

f(x,p) = frs(x,p) + 5f($,p) = fiso (\/puEW/(iC)pu — ()

) +6f(z,p)

A(x)
Landau matching: THu” = eu” with ufu, =1 = fixes u”
no contribution to e, n from 4 f: (E); = (E)s =0 = fixes A, [i.
no contribution to Pr— Py, from 4 f: Ty Rude 22y () ) s = 0 = fixes €.

VAHYDRO decomposition:

Gt = i+ VH VH = <p<“>>g’
- ~ 1

H'—= 0 = 7" has 4 degrees of freedom.

ndl V) 7NN el V ) 4 . ~uv __ =
w, ™ = 7, = (xpx, Yy —22,2,) T = T

Strategy: solve hydrodynamic equations for AHYDRO (which treat Pr—Pr nonper-
turbatively) with added viscous flows from ¢ f, together with IS-like “perturbative”
equations of motion for II, V#, 7wH",
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Viscous anisotropic hydrodynamics (VAHYDRO) (1)

Hydrodynamic equations of motion:

o, =C = fp C(x,p) = nrs = —ngrsb — 8M\~/“ + w in RTA

rel
0,T" =0 =
e — —(€+PT)9J_ — (6+PL)% — ﬁ@ -+ ,ﬁ.MVO-W/'

~ ~ . - Uy - ~ L
(e4Pr+10)i, = —8, (Pp+11) — uy (Pr+I1) — u (Pp—Pp)%0 + ( S o y2 V) 8,7,

= ; = Uy 0 7?“1—u$8 FH2
(e PriDusdy = — D, (Pp+1T) — i —atus!

where 8, = O,u9g+V -u, and D = (uxf?y — uy(’?x)/uL.

To derive equations of motion for I, V', and 7**, we follow DMNR (2012). Ignoring
heat conduction by setting it = 0 and taking m = 0 we find

L v 1
7 = —2uar M) - [(P—PT)AW + (PL—Pr)z"z" + %“”] + KLY A L+ HE 2

Trel

+ng>‘aV>\ua -+ X”VAuaVAza — 2)\0 7M1 V) \ 27 MK, V> 250 7h o

(see Bazow, UH, Strickland, arXiv:1311.6720v2 for details).
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Test of vAHYDRO: (0+1)-dimensional expansion (1)

For (041)-d (longitudinally boost-invariant) expansion, the BE can be solved exactly in RTA (Florkowski,
Ryblewski, Strickland, PRC88 (2013) 024903), and the solution can be used to test the various macroscopic

hydrodynamic approximation schemes.

Setting homogeneous initial conditions in r and 71, and zero transverse flow, 7" reduces to a single
non-vanishing component 7: 7" = diag(0, —7 /2, —7/2,7) at z = 0.

We use the factorization nrs(£A) = Ro(€)nis(A) etc. to get EOMs for £, A, 7

& A 22— e
14+¢ 6A_T+Trel <1 IHeR (g)),

R'(£)€ + 47%(5)% = - <R(£) + %m(&)) % + ﬁ
i = ——[(R© - Ru©) Pult) + 7| - 27
2[R (rae) —2re) + (L5 8) (re© — mi© ) | o,

Trel and 1/ s are related by (Denicol, Koide, Rischke, PRL 105 (2010))
n/s _ . n/s
T RVA(E)A
We solve these equations and compare with the exact solution:
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Test of vAHYDRO: (0+1)-dimensional expansion (1)

Pressure anisotropy Pr,/Pr vs. T:
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Test of vAHYDRO: (0+1)-dimensional expansion (I1)
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Conclusions

e For early times and/or near the transverse edge in heavy-ion collision fireballs, rapid
longitudinal expansion generates large inverse Reynolds numbers for the shear pressure,
R;l = w/7TW7TM,,/PiSO, causing lIsrael-Stewart second order viscous hydrodynamics to break
down.

e The large local pressure anisotropies caused by a large difference in longitudinal and transverse
expansion rates can be treated efficiently by using the non-perturbative AHYDRO approach
which is based on an expanseion around a locally spheroidally deformed distribution fgs.

e This strongly reduces the shear inverse Reynolds numbers fi;l — \/ﬁ“’/ﬁuy/Piso associated
with the remaining shear stress tensor """ resulting from the much smaller deviation ¢ f of the
local distribution function from fgs.

e VAHYDRO combines the advantages of AHYDRO with a complete (although perturbative)
second-order treatment of all remaining viscous effects a la Israel-Stewart.

e In a test of (041)-d expansion, which maximizes the difference between longitudinal and
transverse expansion rates, against an exact solution of the Boltzmann equation, VAHYDRO
outperforms all other known hydrodynamic approximation schemes by a considerable margin.

e This should open the door in (341)-d systems to match microscopic pre-equilibrium theories to
viscous hydrodynamics at earlier times than possible with 1S-theory and its variants.
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