K_S^0 and Λ Production in Charged Jets in p–Pb Collisions at $\sqrt{s_{NN}}$ =5.02 TeV with ALICE

Xiaoming Zhang for the ALICE Collaboration

Quark Matter 2014, May 19–24, 2014, Darmstadt, Germany

Physics Motivation

High multiplicity p-Pb and Pb-Pb collisions - similarities

- double ridge structure
- v₂ > 0 and PID dependent*
- enhanced Λ/K_S⁰ ratio
 - involving several phenomena:
 - radial flow
 - ⇒ coalescence/recombination
 - → jet fragmentation...

This analysis: Λ/K_S^0 ratio in jets in p-Pb

separation of soft and hard processes

ALICE

p-Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

 $|\Delta \eta| > 0.8$ (Near side only

Analysis Strategy

- Tag the hard scattering with charged particle jets (in p_{T,jet}^{ch} > 10 and 20 GeV/c)
- Reconstruct Λ and K_S⁰ (V⁰s)
 within the "jet region":
 R(V⁰, jet) < jet radius R
- Reconstruct Λ and K_S⁰ within the
 UE region
 - several methods, variation included in the systematic uncertainty

Subtract the UE contribution from the jet measurement

ALICE Setup and Data Sample

Inner Tracking System (ITS)
• |η| < 0.9

- vertex reconstruction
- event trigger

Time Projection Chamber (TPC)

- $|\eta| < 0.9$
 - charged particle tracking and identification

- $2.8 < \eta < 5.1$
- event multiplicity
 class determination
- event trigger

- This analysis: $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- about 100M minimum bias events

K_S⁰ and Λ Signal Extraction

Candidate selection

K_S⁰ and Λ candidates
 are selected via decay
 topology based on five
 variables

V⁰ daughters (protons and pions) are identified via dE/dx in TPC

Signal extraction

- fit the invariant mass distribution of V⁰
 candidates with Gaussian to define the
 signal window and side bands
- combinatorial background subtraction,
- interpolated from the slide bands QM2014, X. Zhang for the ALICE Collaboration

Charged Jet Reconstruction

poster: R. Haake, Tue. May 20th, 16:30, QM2014

Charged jet definition

- anti- k_T , R = 0.2, 0.3 and 0.4
- $p_{\text{T,track}} > 0.15 \text{ GeV/}c$
- $|\eta_{\text{track}}| < 0.9$
- includes only charged tracks

Jet background density

- median p_T density of jets reconstructed by $k_{\rm T}$ -algorithm for each jet radius
- corrected by the charged track occupancy event-by-event
- background fluctuations: variance ~1 GeV/c

ALT-PERF-53829

V⁰-Jet Matching

- V⁰—jet matching
 - Vos and jets are reconstructed independently
 - select Vos in the jet cone: R(Vo, jet) < Rjet
- Acceptance
 - $|\eta_{V0}| < 0.75$, $|\eta_{jet}| < 0.75$ R_{jet} in the lab. frame

Underlying Event Estimation

Two classes of underlying events

• Vos outside jet cone, $R(V^0, jet) > R_{cut}$ ($R_{cut} = 0.4, 0.6, 0.8, default <math>R_{cut} = 0.6$)

• Vos in events without with $p_{T,jet}^{ch} > 5$ GeV/C

Detector acceptance

- V⁰ spectrum outside jet cone harder than in events w/o a tagged jet
- Vo outside jets for different radii equal within ~10%
- Uncertainty on underlying event: ~10% (~2%) at low (high) p_T QM2014, X. Zhang for the ALICE Collaboration

Efficiency and Feed-down Correction

Efficiency of Vos

no difference in the
 efficiency of single V⁰s
 inside and outside jet cone

η-dependence accounted for by reweighing with η-distributions of V⁰ in jets

Feed-down correction for Λ from Ξ decays

- secondary Vos in jet cone are corrected after underlying event subtraction
- difference between the feed-down fraction of inclusive V⁰s in data and that of V⁰s in jets from MC is taken as uncertainty (5%)

p_T -differential Density of V⁰s in Jets

- p_T -differential density: spectra per event and unit acceptance ($\Delta \phi \times \Delta \eta$)
- Much harder distribution as compared to the inclusive next: Λ/K_S⁰ ratio

NKs⁰ Ratio in Jets

NKs⁰ Ratio in Jets

- Λ/K_S⁰ ratio significantly lower in jets than inclusive
- Ratio for different radii is the same within uncertainties
- Similar observation within uncertainties for high and low multiplicity events

- PYTHIA8 pp collisions in jets: similar to p-Pb data
- Consistent picture for $p_{T,jet}^{ch} > 10 \text{ GeV}/c$ and $p_{T,jet}^{ch} > 20 \text{ GeV}/c$
 - no significant variation of the Λ/K_S⁰ ratio in jets observed

Conclusion

- The first measurement of strange particle production in jets in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
- Baryon/meson ratio of Λ and K_{S^0} well separated into a jet region and the underlying event at intermediate p_T .
- The enhanced ratio of Λ/K_{S^0} in p–Pb collisions relative to pp collisions is not present within the jet region
 - It is clearly a feature of the "underlying event" dominated by soft particle production
 - Similar observations for different jet radii and event multiplicity classes
 - Underlying event: an interplay of radial flow and jets with little room for coalescence/recombination mechanism (?)

Outlook

Measurement with full/charged jets in Pb–Pb collisions

poster: V. Kucera and A. Zimmermann, Tue. May 20th, 16:30, QM2014

 Long term: Baryon/meson ratio in the heavy-flavour sector...

poster: C. Bianchin, Tue. May 20th, 16:30, QM2014

Backup

Physics Motivation

Physics Motivation

Systematic Uncertainty

- Uncertainty on V⁰ candidates selection:
 - by varying the decay topology cut in data and MC simultaneously
 - 2–5% for K_{S^0} and 3–6% for Λ
- Uncertainty on V⁰ signal extraction: 6% (10%) in $p_{T,jet}>10$ GeV/c (20 GeV/c)
- Uncertainty on underlying event selection: ~10% (~2%) at low (high) p_T
- Uncertainty from jet p_T scale (affected by the jet background fluctuations):
 - obtained by spectra variations when jet p_T varied within 20%
 - ~1% at low- p_T GeV/c; 10% at high- p_T
 - correlated with jet p_T , almost cancels in Λ/K_{S^0} ratio
- Uncertainty on feed-down correction: ~5%
 - correlated with Λ the production

Underlying Event Estimation

p_T -differential Density of V⁰s in Jets

NKs⁰ Ratio in Jets

NKs⁰ Ratio in Jets

Outlook

Measurement with full/charged jets in Pb-Pb collisions poster: V. Kucera and A. Zimmermann, Tue. May 20th, 16:30, QM2014

Long term: Baryon/meson ration in the heavy-flavour sector...

poster: C. Bianchin, Tue. May 20th, 16:30, QM2014

Uncorrected A and K_S⁰ in charged jets

uncorrected 1 dN (c/GeV) K_S⁰ in jet cones Pb-Pb 0-10 % ALICE Preliminary $s_{NN} = 2.76 \text{ TeV}$ > 10 GeV/c, x 4 > 20 GeV/c, x 8 $|\eta_{\rm po}|<0.7$ Λ in jet cones > 10 GeV/c, x 1 anti- k_1 , R = 0.3> 150 MeV/c $p^{\text{leading track}} > 5 \text{ GeV/}c$ $p_{\tau}^{V^0}$ (GeV/c) ALI-PREL-71683 ALI-PREL-71274

Entries $0.30 < z^{\text{obs}} < 0.60$ Signif.(3 σ) = (4.3 \pm 1.2) 150 $S/B (3\sigma) = (0.24 \pm 0.08)$ ALICE Preliminary pp. s = 8 TeV100 Ldt = 70 nb

0.15

 $M(K\pi\pi)-M(K\pi) (GeV/c^2)$

0.16

0.14

QM2014, X. Zhang for the ALICE Collaboration