First principle calculation of dilepton production rate in strongly interacting QGP

Taekwang Kim, Masayuki Asakawa, Masakiyo Kitazawa (Osaka Univ.)

Motivation

Dilepton production at PHENIX shows an enhancement at low energy.

Strategy

- **Lattice**
 - 2-pole quark spectral function obtained by quenched QCD.
 - Slab model
 - Normal
 - Plasma

- **Virtual photon emission**
 - Quasi-particle pair annihilation
 - Landau damping

- **Vertex**
 - Propagator determines vertexes by Ward-Takahashi identity and isotropy

Results

- **Dilepton production rate**
 - Our Result
 - T=3Tc
 - Tc=290 MeV
 - m_0=0.744T
 - \(q_0 \): Dilepton invariant mass
 - Large than HTL result
 - Similar result for 1.5Tc

- **Enhancement around 1.5m_0** is caused by Landau damping.
- Recattering of thermally excited quasi-particles enhance dilepton production rate.
- 2 divergence comes from van Hove singularity.
- Plasmino density of states and density of integrated states diverse.

Summary

- We calculated dilepton production rate from static QGP using the quark propagator obtained in quenched lattice QCD and SDE.
- Production rate enhanced for \(q_0 = 300 \sim 600 \) MeV. \(\Rightarrow \) origin of the large enhancement reported at RHIC by PHENIX group?
- Future: dilepton production "yield" from QGP using these data.