A new calculation of light quark jet energy loss using the AdS/CFT Correspondence

(8)

(9)

Razieh Morad

Department of Physics, University of Cape Town, Rondebosch, Cape town, South Africa

Quark-Gluon Plasma

- Quark-gluon fluid of RHIC behaves as nearly ideal, strongly coupled fluid (sQGP). \triangleright If produced particles interact \rightarrow Local equilibration \rightarrow produce some kind of fluid \rightarrow pressure gradients \rightarrow collective motion \rightarrow Elliptic Flow
- Rough agreement with hydrodynamic models based on perfect liquid.
- \triangleright Small shear viscosity \rightarrow Strongly interacting !
 - Hydrodynamics: $\eta/s = 0.1 \sim 0.2$

Jet p_⊤ (GeV/c)

Our New Jet Prescription

Energy Loss in a Boost-Invariant Geometry

Asymptotic boost-invariant geometry for the perfect fluid:

- Naive pQCD: $\eta/s = 1$ N=4 SYM: $\eta/s = 1/4\pi$
- ▷ Rapid thermalization: Less than 1 fm!
- ► Hard Probes:
- ▷ Jets are produced within the expanding fireball and probe the QGP.
- effect of hot matter on properties of jets
 - → Nuclear Modification Factor

AdS/CFT Correspondence

- \triangleright N = 4 Super-Yang-Mills theory in 4d in large N_C and strong coupling limit \Leftrightarrow A Classical supergravity on the 10d $AdS_5 \times S^5$
- \blacktriangleright Studying the theory at finite temperature \Leftrightarrow Adding black hole to the geometry: AdS-Schwarzchild metric
- \blacktriangleright Fundamental quarks in theory \Leftrightarrow Open strings moving in the 10d geometry AdS-Sch metric

$$ds^{2} = \frac{L^{2}}{u^{2}} \left[-f(u) dt^{2} + dx^{2} + \frac{du^{2}}{f(u)} \right], f(u) \equiv 1 - (u/u_{h})^{4} \quad (1)$$

Hawking temperature: $T \equiv \frac{1}{(\pi u)}$, AdS curvature radius: $L^{2}T_{0} = \frac{\sqrt{\lambda}}{2\pi}$

$$ds^{2} = \frac{L^{2}}{u^{2}} \left[-\frac{\left(1 - \frac{e_{0}}{3} \frac{u^{4}}{\tau^{4/3}}\right)^{2}}{1 + \frac{e_{0}}{3} \frac{u^{4}}{\tau^{4/3}}} d\tau^{2} + \left(1 + \frac{e_{0}}{3} \frac{u^{4}}{\tau^{4/3}}\right) (\tau^{2} dy^{2} + dx_{\perp}^{2}) + du^{2} \right]$$

Dimensionfull parameter e_0 determines the energy density as $f(\tau) = e_0/\tau^{4/3}$. Rapidity y, and proper time τ are defined as: $x^0 = \tau \cosh y$, $x^3 = \tau \sinh y$

The metric (8) looks usual AdS-Sch metric with the horizon moving in the bulk

$$z_h = \left(\frac{3}{e_0}\right)^{1/4} \tau^{1/3},$$
 (10)

Temperature is cooling as

$$T(\tau) = \frac{\sqrt{2}}{\pi} \left(\frac{3}{e_0}\right)^{-1/4} \tau^{-1/3}$$
(11)

Next step is choosing the appropriate initial conditions, boundary conditions and stretching function for the string. Old Prescription of Jet Our New Prescription of Jet

String attached to a D7-brane ending at um \Leftrightarrow Quark of mass m_Q For light quarks, D7 brane fills all of the AdS-BH geometry \Leftrightarrow Falling Strings

Light Quark in AdS-Sch

Dynamics of classical string : Polyalov Action

$$S_P = -\frac{T_0}{2} \int d^2 \sigma \, \sqrt{-\eta} \, \eta^{ab} \, \partial_a X^\mu \partial_b X^\nu \, G_{\mu\nu} \tag{2}$$

Equations of motion for the embedding functions:

$$\partial_{a} \left[\sqrt{-\eta} \, \eta^{ab} \, G_{\mu\nu} \, \partial_{b} X^{\nu} \right] = \frac{1}{2} \sqrt{-\eta} \, \eta^{ab} \frac{\partial G_{\nu\rho}}{\partial X^{\mu}} \, \partial_{a} X^{\nu} \partial_{b} X^{\rho} \tag{3}$$

Choosing the world sheet metric:

$$\|\eta_{ab}\| = \begin{pmatrix} -\Sigma(x,u) & 0\\ 0 & \Sigma(x,u)^{-1} \end{pmatrix}, \ \Sigma(x,u) = \begin{pmatrix} \frac{1-u/u_h}{1-u_c/u_h} \end{pmatrix} \begin{pmatrix} \frac{u_c}{u} \end{pmatrix}^2$$
(4)

point like initial conditions:

$$x(0,\sigma)=0$$
, $u(0,\sigma)=u_c$, $t(0,\sigma)=t_c$

Total energy of string is conserved:

$$E_{\text{string}} = -\int_0^{\pi} d\sigma \,\sqrt{-\eta} \,\Pi_t^{\tau}(\mathbf{0},\sigma) \tag{6}$$

Nuclear Modification Factor

Energy Loss:

$$\frac{dp_t}{dt}(\tilde{\sigma},t) = -\frac{\sqrt{-\eta}}{\dot{t}} \left[\Pi_t^{\sigma} - \left(\dot{t} \, \Pi_t^{\tau} + t' \, \Pi_t^{\sigma} \right) \frac{d\sigma_{\kappa}}{dt} \right]_{(\sigma_{\kappa}(t),t)}$$

Original Jet definition:

Conclusions

(5)

(7)

- ▶ If we define the jet as a part of string above the energy scale **500***MeV*, Bragg peak appeared!
- ► If we consider the JP metric, an expanding plasma, the thermalization time and stopping distance for light quark are larger than those on the AdS-Sch metric.
- Light quark energy loss is highly depends on the initial conditions of string. ▶ If we define the regularized R_{AA} by dividing to the $R_{AA}^{AdS_5}$, the result are in good agreement with jet data!
- Searching for a new string configuration dual to a high energetic quark in the QGP.