

Bulk properties and hydrodynamics: Observables and concepts

Pasi Huovinen

J. W. Goethe Universität & Frankfurt Institute for Advanced Studies

Student lecture, Quark Matter 2014

May 18, 2014, GSI

What happens when you compress nuclear matter to very high temperatures and densities?

– Can we create strongly interacting matter?

Nuclear phase diagram

 $\begin{array}{l} \mbox{Multiplicity @ LHC} \\ \sim 15000 \end{array}$

© Dirk H. Rischke

Conservation laws

Conservation of energy and momentum:

 $\partial_{\mu}T^{\mu\nu}(x) = 0$

Conservation of charge:

$$\partial_{\mu}N^{\mu}(x) = 0$$

Local conservation of particle number and energy-momentum

↔ Hydrodynamical equations of motion!

This can be generalized to multicomponent systems and systems with several conserved charges:

$$\partial_{\mu}N_{i}^{\mu}=0,$$

i = baryon number, strangeness, charge...

Conservation of energy and momentum:

$$\partial_{\mu}T^{\mu\nu}(x) = 0$$

Conservation of charge:

$$\partial_{\mu}N^{\mu}(x) = 0$$

Consider only baryon number conservation, i = B.

- \Rightarrow 5 equations contain 14 unknowns!
- \Rightarrow The system of equations does not close.
- ⇒ Provide 9 additional equations or Eliminate 9 unknowns.

Ideal fluid approximation:

$$N^{\mu} = nu^{\mu}$$
$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\mu}$$

- Particles in local thermodynamical equilibrium,
- Now N^{μ} and $T^{\mu\nu}$ contain 6 unknowns, ϵ , P, n and u^{μ} , but there are still only 5 equations!
- In thermodynamical equilibrium ϵ , P and n are not independent! They are specified by two variables, T and μ .
- The equation of state (EoS), $P(T, \mu)$ closes the system of hydrodynamic equations and makes it uniquely solvable (given initial conditions).
- EoS usually given by lattice QCD calculations and hadron resonance gas model see lectures by Ratti and Kalweit

Dissipative hydrodynamics

General case in Landau frame

$$N^{\mu} = nu^{\mu} + \nu^{\mu}$$
$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

(where $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$) Need 9 additional equations to determine

- Π : bulk pressure
- $\pi^{\mu\nu}$: shear stress tensor
 - ν^{μ} : charge flow

Usually only shear is included, bulk sometimes, charge/heat flow not so far

In the following only system with no charge/baryon current and with shear only is discussed

relativistic Navier-Stokes

dissipative currents small corrections linear in gradients

 $\pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu\rangle}$

 η shear viscosity coefficient

• resulting equations of motion acausal and unstable!

Causal viscous hydro

bulk pressure Π , shear stress $\pi^{\mu\nu}$ heat flow q^{μ} treated as independent dynamical quantities that relax to their Navier-Stokes value on time scales $\tau_{\Pi}(e,n)$, $\tau_{\pi}(e,n)$, $\tau_{q}(e,n)$

Müller, Israel & Stewart...

Israel & Stewart evolution equation for shear

$$D\pi^{\mu\nu} = -\frac{1}{\tau_{\pi}} \left(\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} \right) - (\pi^{\lambda\mu} u^{\nu} + \pi^{\lambda\nu} u^{\mu}) Du_{\lambda} - \frac{1}{2} \pi^{\mu\nu} \nabla_{\lambda} u^{\lambda} + \cdots$$

leads to causal and stable equations of motion

One more parameter: relaxation time τ_{π}

©Dirk H. Rischke

Usefulness of hydro?

- Initial state:
- Equation of state:
- Transport coefficients: unknow
- Freeze-out:

unknown unknown unknown

unknown

 \Rightarrow Predictive power?

Usefulness of hydro?

- Initial state:

- Freeze-out:

unknown

unknown

Need More Constraints!

"Hydrodynamical method"

1. Use another model to fix unknowns (and add new assumptions. . .)

- initial: color glass condensate or pQCD+saturation
- initial and/or final: hadronic cascade
- EoS: lattice QCD
- 2. Use data to fix parameters:

Principle		Example @ RHIC
 use one set of data 	\iff	$\frac{\mathrm{d}N}{\mathrm{d}yp_T\mathrm{d}p_T}\Big _{b=0}$ and $\frac{\mathrm{d}N}{\mathrm{d}y}(b)$
 fix parameters to fit it 	\iff	$\begin{cases} \epsilon_{0,\max} = 29.6 \mathrm{GeV/fm}^3 \\ \tau_0 = 0.6 \mathrm{fm/c} \\ T_{\mathrm{fo}} = 130 \mathrm{MeV} \end{cases}$
 predict another set of data 	\iff	HBT, photons & dileptons, elliptic flow

Bjorken hydrodynamics

- At very large energies, $\gamma \to \infty$ and thickness of the collision region $\to 0$
- Lack of longitudinal scale \Rightarrow scaling flow

$$v = \frac{z}{t}$$

P. Huovinen @ QM Student lecture, May 18, 2014

- Practical coordinates to describe scaling flow expansion are
 - Longitudinal proper time τ :

$$\tau \equiv \sqrt{t^2 - z^2} \quad \Leftrightarrow \quad t = \tau \cosh \eta$$

– Space-time rapidity η_s :

$$\eta_s = \frac{1}{2} \ln \frac{t+z}{t-z} \quad \Leftrightarrow \quad z = \tau \sinh \eta$$

- Boost invariance: if the initial state is independent of η_s , and flow is v=z/t, the system stays independent of η_s
- \Rightarrow sufficient to solve expansion numerically in 2 dimensions
- \Rightarrow 2+1D hydro!
 - Good approximation at LHC and highest RHIC energies

Initial density distribution

• Nuclear geometry implies that density is not uniform

Miller et al., Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)

Initial density distribution

• Nuclear geometry implies that density varies event-by-event

Miller et al., Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)

- evaluate average initial state, and evolve it or
- evolve many initial state \Rightarrow event-by-event hydro

Models for initial conditions

- Glauber: geometric model determining wounded nucleons based on the inelastic nucleon-nucleon cross section (whole family of variants)
- MC-KLN: Color-Glass-Condensate (CGC) based model using kT factorization
- IP-Glasma: CGC based model using classical Yang-Mills evolution of early-time gluon fields, including fluctuations in the particle production
- pQCD+saturation: calculate minijets using pQCD to get energy deposited in the collision region
- event generators: UrQMD (hadronic), BAMPS and AMPT (partonic) or EPOS can be used to create initial state for hydro
- so far none of these reaches equilibrium, but it has to be dialed in by hand
- see lectures by Salgado and Loizides

Initial conditions

Besides density distribution, one has to decide

- Initial time τ_0 : thermalization time usually 0.2 1 fm/c
- Initial transverse flow: often set to zero, some models provide finite transverse flow
- **Boost-invariant or not** (if not, what are the longitudinal flow and density profiles?)
- Initial $\pi^{\mu\nu}$: zero, Navier-Stokes value or something else?

When to end?

- How far is hydro valid?
- How and when to convert fluid to particles?

Note that particle chemistry may be frozen before momentum distributions!
 ⇒ separate chemical and kinetic freeze-outs (PCE EoS)

Hybrid models

- End hydro when rescatterings still frequent
- Convert fluid to particle ensembles
- Describe evolution of particles using hadronic transport
- Advantages:
 - chemical evolution and dissipation described
 - physical decoupling
- Disadvantages:
 - all the unknowns of hadronic cascade. . .
 - where and how to switch?
- Note: The switch from fluid to cascade is NOT freeze-out \Rightarrow particlization

Cooper-Frye

• Number of particles emitted = Number of particles crossing Σ_{fo}

$$\Rightarrow \quad N = \int_{\Sigma_{\rm fo}} \mathrm{d}\Sigma_{\mu} \, N^{\mu}$$

• Frozen-out particles do not interact anymore: kinetic theory

$$\Rightarrow N^{\mu} = \int \frac{\mathrm{d}^{3}\mathbf{p}}{E} p^{\mu} f(x, p \cdot u)$$
$$\Rightarrow N = \int \frac{\mathrm{d}^{3}\mathbf{p}}{E} \int_{\Sigma_{\mathrm{fo}}} \mathrm{d}\Sigma_{\mu} p^{\mu} f(x, p \cdot u)$$

• Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

$$E\frac{\mathrm{d}N}{\mathrm{d}\mathbf{p}^3} = \int_{\Sigma_{\mathrm{fo}}} \mathrm{d}\Sigma_{\mu} \, p^{\mu} f(x, p \cdot u)$$

Cooper and Frye, PRD 10, 186 (1974)

P. Huovinen @ QM Student lecture, May 18, 2014

Blast wave

(Siemens and Rasmussen, PRL 42, 880 (1979))

- Freeze-out surface a thin cylindrical shell radius r, thickness dr, expansion velocity v_r , decoupling time τ_{fo} , boost invariant
- Cooper-Frye for Boltzmannions

$$\frac{\mathrm{d}N}{\mathrm{d}y\,p_T\,\mathrm{d}p_T} = \frac{g}{\pi}\,\tau_{\mathrm{fo}}\,r\,m_T\,\mathrm{I}_0\left(\frac{v_r\gamma_r p_T}{T}\right)\,\mathrm{K}_1\left(\frac{\gamma_r m_T}{T}\right)$$

effect of temperature and flow velocity

- The larger the temperature, the flatter the spectra
- The larger the velocity, the flatter the spectra \Rightarrow blueshift
- The heavier the particle, the more sensitive it is to flow (shape and slope)

Elliptic flow v_2

spatial anisotropy \rightarrow final azimuthal momentum anisotropy

Anisotropy in coordinate space + rescattering
 Anisotropy in momentum space

Elliptic flow v_2

• Fourier expansion of momentum distribution:

 $\frac{\mathrm{d}N}{\mathrm{d}y\,p_T\mathrm{d}p_T\,\mathrm{d}\phi} = \frac{1}{2\pi} \frac{\mathrm{d}N}{\mathrm{d}y\,p_T\mathrm{d}p_T} (1 + 2\mathbf{v_1}(y, p_T)\cos\phi + 2\mathbf{v_2}(y, p_T)\cos 2\phi + \cdots)$

 v_1 : Directed flow: preferred direction v_2 : Elliptic flow: preferred plane

sensitive to speed of sound $c_s^2 = \partial p / \partial e$ and shear viscosity η

event-by-event

- shape fluctuates event-by-event
- all coefficients v_n finite

$$\frac{\mathrm{d}N}{\mathrm{d}y\mathrm{d}\phi} = \frac{\mathrm{d}N}{\mathrm{d}y} \left[1 + \sum_{n} 2v_n \cos(2(\phi - \Psi_n)) \right]$$

All the planes. . .

- X_{RP} : Reaction plane, spanned by beam and impact parameter
- X_{PP} : Participant plane, maximises spatial anisotropy ϵ_n
- Ψ_n : Event plane, maximises anisotropy v_n

Success of ideal hydrodynamics

• p_T -averaged v_2 of charged hadrons:

• works beautifully in central and semi-central collisions

• but why is $v_{2,obs} > v_{2,hydro}$ in most central collisions? \Rightarrow fluctuations!

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias Au+Au at RHIC

not perfect agreement but plasma EoS favored

ideal fluid? — so how ideal is plasma actually. . . ?

η/s from comparison with observed v_2

• Luzum & Romatschke, Phys.Rev.C78:034915,2008

• $\eta/s = 0.08$ or $\eta/s = 0.16$ depending on initialization • consensus: $1 < 4\pi \frac{\eta}{s} < 5$

Sensitivity to η/s

Schenke et al. Phys.Rev.C85:024901,2012

• higher coefficients are suppressed more by dissipation

 η/s from v_n

Gale et al. Phys.Rev.Lett. 110, 012302 (2013)

- IP-Glasma initialization
- Iooks promising!

Distributions of v_n event-by-event

Niemi et al. Phys.Rev.C87, 054901 (2013)

- $\delta v_n \approx \delta \epsilon_n$ independent of η/s
- measurement of initial state?

Flow in small systems?

• at LHC, even p + Pb collisions seem to show collective behaviour

• expect to hear much about this!

Summary

- Hydrodynamics is a useful tool to model collision dynamics
 - approximation at its best
 - but it can reproduce (a lot of) the data
- we have observed hydrodynamical behaviour at RHIC and LHC
 - and will observe more!
- There are many variants of the model
 - initialization
 - 2+1D vs. 3+1D
 - pure hydro vs. hybrid
 - etc.
- We aim to understand transport properties of QGP and test the initial state models using hydro