

Bulk properties and hydrodynamics: Observables and concepts

Pasi Huovinen

J. W. Goethe Universität & Frankfurt Institute for Advanced Studies

Student lecture, Quark Matter 2014

May 18, 2014, GSI

What happens when you compress nuclear matter to very high temperatures and densities?

− Can we create strongly interacting matter?

Nuclear phase diagram

- Transient matter • lifetime $t \sim 10$ fm/c $\sim 10^{-23}$ seconds • small size $r \sim 10$ fm $\sim 10^{-14}$ m
	- rapid expansion

Multiplicity @ LHC $∼ 15000$

c Dirk H. Rischke

Conservation laws

Conservation of energy and momentum:

 $\partial_{\mu}T^{\mu\nu}(x)=0$

Conservation of charge:

 $\partial_{\mu}N^{\mu}(x)=0$

Local conservation of particle number and energy-momentum

 \iff Hydrodynamical equations of motion!

This can be generalized to multicomponent systems and systems with several conserved charges:

$$
\partial_{\mu}N_{i}^{\mu}=0,
$$

 $i =$ baryon number, strangeness, charge. \ldots

Conservation of energy and momentum:

$$
\partial_{\mu}T^{\mu\nu}(x) = 0
$$

Conservation of charge:

$$
\partial_{\mu}N^{\mu}(x) = 0
$$

Consider only baryon number conservation, $i=B.$

- \Rightarrow 5 equations contain 14 unknowns!
- \Rightarrow The system of equations does not close.
- \Rightarrow Provide 9 additional equations or Eliminate 9 unknowns.

Ideal fluid approximation:

$$
N^{\mu} = nu^{\mu}
$$

$$
T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\mu}
$$

- Particles in local thermodynamical equilibrium,
- Now N^{μ} and $T^{\mu\nu}$ contain 6 unknowns, ϵ , P , n and u^{μ} , but there are still only 5 equations!
- In thermodynamical equilibrium ϵ , P and n are not independent! They are specified by two variables, T and $\mu.$
- \bullet The equation of state (EoS), $P(T,\mu)$ closes the system of hydrodynamic equations and makes it uniquely solvable (given initial conditions).
- EoS usually given by lattice QCD calculations and hadron resonance gas model — see lectures by Ratti and Kalweit

Dissipative hydrodynamics

General case in Landau frame

$$
N^{\mu} = nu^{\mu} + \nu^{\mu}
$$

$$
T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}
$$

(where $\Delta^{\mu\nu}=g^{\mu\nu}-u^\mu u^\nu)$ Need 9 additional equations to determine

- Π: bulk pressure
- $\pi^{\mu\nu}$: shear stress tensor
	- ν^{μ} : charge flow

Usually only shear is included, bulk sometimes, charge/heat flow not so far

In the following only system with no charge/baryon current and with shear only is discussed

relativistic Navier-Stokes

dissipative currents small corrections linear in gradient s

 $\pi^{\mu\nu}=2\eta\nabla^{\langle\mu}u^{\nu\rangle}$

 η shear viscosity coefficient

• resulting equations of motion acausal and unstable!

Causal viscous hydro

bulk pressure Π , shear stress $\pi^{\mu\nu}$ heat flow q^μ treated as independent dynamical quantities that relax to their Navier-Stokes value on time scales $\tau_{\Pi}(e,n)$, $\tau_{\pi}(e,n)$, $\tau_{q}(e,n)$

Müller, Israel & Stewart...

Israel & Stewart evolution equation for shear

$$
D\pi^{\mu\nu} = -\frac{1}{\tau_{\pi}}\left(\pi^{\mu\nu} - 2\eta\nabla^{\langle\mu}u^{\nu\rangle}\right) - (\pi^{\lambda\mu}u^{\nu} + \pi^{\lambda\nu}u^{\mu})Du_{\lambda} - \frac{1}{2}\pi^{\mu\nu}\nabla_{\lambda}u^{\lambda} + \cdots
$$

leads to causal and stable equations of motion

One more parameter: relaxation time τ_{π}

P. Huovinen @ QM Student lecture, May 18, 2014 10

C Dirk H. Rischke 10

Usefulness of hydro?

 $\overline{ }$

 $\Bigg\}$

 \int

- Initial state: unknown
- Equation of state:
- Transport coefficients:
- Freeze-out: unknown

[⇒] Predictive power?

Usefulness of hydro?

- Initial state: unknown
- Equation of state: want to study
- Transport coefficients: want to study
- Freeze-out: unknown

Need More Constraints!

"Hydrodynamical method"

1. Use another model to fix unknowns (and add new assumptions. . .)

- initial: color glass condensate or pQCD+saturation
- initial and/or final: hadronic cascade
- EoS: lattice QCD
- 2. Use data to fix parameters:

Bjorken hydrodynamics

- At very large energies, $\gamma \rightarrow \infty$ and thickness of the collision region $\rightarrow 0$
- Lack of longitudinal scale ⇒ scaling flow

$$
v = \frac{z}{t}
$$

- Practical coordinates to describe scaling flow expansion are
	- Longitudinal proper time τ :

$$
\tau \equiv \sqrt{t^2 - z^2} \quad \Leftrightarrow \quad t = \tau \cosh \eta
$$

– Space-time rapidity η_s :

$$
\eta_s = \frac{1}{2} \ln \frac{t+z}{t-z} \quad \Leftrightarrow \quad z = \tau \sinh \eta
$$

- \bullet Boost invariance: if the initial state is independent of η_s , and flow is $v=z/t$, the system stays independent of η_s
- \Rightarrow sufficient to solve expansion numerically in 2 dimensions
- \Rightarrow 2+1D hydro!
	- Good approximation at LHC and highest RHIC energies

Initial density distribution

• Nuclear geometry implies that density is not uniform

Miller et al., Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)

Initial density distribution

• Nuclear geometry implies that density varies event-by-event

Miller et al., Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)

- evaluate average initial state, and evolve it or
- evolve many initial state ⇒ event-by-event hydro

Models for initial conditions

- Glauber: geometric model determining wounded nucleons based on the inelastic nucleon-nucleon cross section (whole family of variants)
- MC-KLN: Color-Glass-Condensate (CGC) based model using kT factorization
- IP-Glasma: CGC based model using classical Yang-Mills evolution of early-time gluon fields, including fluctuations in the particle production
- pQCD+saturation: calculate minijets using pQCD to get energy deposited in the collision region
- event generators: UrQMD (hadronic), BAMPS and AMPT (partonic) or EPOS can be used to create initial state for hydro
- − so far none of these reaches equilibrium, but it has to be dialed in by hand
- − see lectures by Salgado and Loizides

Initial conditions

Besides density distribution, one has to decide

- Initial time τ_0 : thermalization time usually $0.2 1$ fm/c
- Initial transverse flow: often set to zero, some models provide finite transverse flow
- Boost-invariant or not (if not, what are the longitudinal flow and density profiles?)
- Initial $\pi^{\mu\nu}$: zero, Navier-Stokes value or something else?

When to end?

- How far is hydro valid?
- How and when to convert fluid to particles?

• Note that particle chemistry may be frozen before momentum distributions! \Rightarrow separate chemical and kinetic freeze-outs (PCE EoS)

Hybrid models

- End hydro when rescatterings still frequent
- Convert fluid to particle ensembles
- Describe evolution of particles using hadronic transport
- Advantages:
	- chemical evolution and dissipation described
	- physical decoupling
- Disadvantages:
	- all the unknowns of hadronic cascade. . .
	- where and how to switch?
- Note: The switch from fluid to cascade is NOT freeze-out \Rightarrow particlization

Cooper-Frye

• Number of particles emitted $=$ Number of particles crossing $\Sigma_{\rm fo}$

$$
\Rightarrow \quad N = \int_{\Sigma_{\rm fo}} \mathrm{d} \Sigma_{\mu} \, N^{\mu}
$$

• Frozen-out particles do not interact anymore: kinetic theory

$$
\Rightarrow N^{\mu} = \int \frac{d^3 \mathbf{p}}{E} p^{\mu} f(x, p \cdot u)
$$

$$
\Rightarrow N = \int \frac{d^3 \mathbf{p}}{E} \int_{\Sigma_{\text{fo}}} d\Sigma_{\mu} p^{\mu} f(x, p \cdot u)
$$

• Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

$$
E\frac{\mathrm{d}N}{\mathrm{d}\mathbf{p}^3} = \int_{\Sigma_{\mathrm{fo}}} \mathrm{d}\Sigma_{\mu} p^{\mu} f(x, p \cdot u)
$$

Cooper and Frye, PRD 10, 186 (1974)

P. Huovinen @ QM Student lecture, May 18, 2014 22

Blast wave

(Siemens and Rasmussen, PRL 42, 880 (1979))

- Freeze-out surface a thin cylindrical shell radius r , thickness dr , expansion velocity v_r , decoupling time $\tau_{\rm fo}$, boost invariant
- Cooper-Frye for Boltzmannions

$$
\frac{dN}{dy p_T dp_T} = \frac{g}{\pi} \tau_{\text{fo}} r m_T I_0 \left(\frac{v_r \gamma_r p_T}{T} \right) K_1 \left(\frac{\gamma_r m_T}{T} \right)
$$

effect of temperature and flow velocity

- The larger the temperature, the flatter the spectra
- The larger the velocity, the flatter the spectra \Rightarrow blueshift
- The heavier the particle, the more sensitive it is to flow (shape and slope)

Elliptic flow v_2

spatial anisotropy \rightarrow final azimuthal momentum anisotropy

• Anisotropy in coordinate space + rescattering [⇒] Anisotropy in momentum space

Elliptic flow v_2

• Fourier expansion of momentum distribution:

 $\mathrm{d}N$ $\mathrm{d}y\, p_T \mathrm{d}p_T \,\mathrm{d}\phi$ = 1 2π $\mathrm{d}N$ $\frac{\alpha_1}{\mathrm{d}y\, p_T \mathrm{d}p_T} (1+2v_1(y, p_T)\cos\phi+2v_2(y, p_T)\cos2\phi+\cdots)$

 v_1 : Directed flow: preferred direction v_2 : Elliptic flow: preferred plane

sensitive to speed of sound $c_s^2 = \partial p/\partial e$ and shear viscosity η

event-by-event

- shape fluctuates event-by-event
- all coefficients v_n finite

$$
\frac{\mathrm{d}N}{\mathrm{d}y\mathrm{d}\phi} = \frac{\mathrm{d}N}{\mathrm{d}y} \left[1 + \sum_{n} 2v_n \cos(2(\phi - \Psi_n)) \right]
$$

All the planes. . .

- X_{RP} : Reaction plane, spanned by beam and impact parameter
- X_{PP} : Participant plane, maximises spatial anisotropy ϵ_n
- Ψ_n : Event plane, maximises anisotropy v_n

Success of ideal hydrodynamics

 \bullet p_T -averaged v_2 of charged hadrons:

• works beautifully in central and semi-central collisions

• but why is $v_{2,\rm obs} > v_{2,hydro}$ in most central collisions? \Rightarrow fluctuations!

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias Au+Au at RHIC

not perfect agreement but plasma EoS favored

ideal fluid? — so how ideal is plasma actually. . . ?

η/s from comparison with observed $\overline{v_2}$

• Luzum & Romatschke, Phys.Rev.C78:034915,2008

• $\eta/s = 0.08$ or $\eta/s = 0.16$ depending on initialization • consensus: $1 < 4\pi^{\eta}$ $\frac{\eta}{s} < 5$

Sensitivity to η/s

Schenke et al. Phys.Rev.C85:024901,2012

• higher coefficients are suppressed more by dissipation

 η/s from v_n

Gale et al. Phys.Rev.Lett. 110, 012302 (2013)

- IP-Glasma initialization
- looks promising!

Distributions of v_n event-by-event

Niemi et al. Phys.Rev.C87, 054901 (2013)

- $\delta v_n \approx \delta \epsilon_n$ independent of η/s
- measurement of initial state?

Flow in small systems?

 \bullet at LHC, even $p+Pb$ collisions seem to show collective behaviour

• expect to hear much about this!

Summary

- Hydrodynamics is ^a useful tool to model collision dynamics
	- approximation at its best
	- but it can reproduce (a lot of) the data
- we have observed hydrodynamical behaviour at RHIC and LHC
	- and will observe more!
- There are many variants of the model
	- initialization
	- $2 + 1D$ vs. $3 + 1D$
	- pure hydro vs. hybrid
	- $-$ etc.
- We aim to understand transport properties of QGP and test the initial state models using hydro