The QCD Equation of State

A. Bazavov [HotQCD Collaboration]

University of Iowa

May 20, 2014

[Quark-Gluon Plasma](#page-3-0)

[Lattice QCD and numerical setup](#page-4-0)

[HISQ/tree – scale setting](#page-6-0)

[Interaction measure](#page-7-0)

[Equation of state](#page-14-0)

[Conclusion](#page-16-0)

HotQCD collaboration

-
- T. Bhattacharya (LANL) U. Heller (APS) D. Renfrew (Columbia)
-
-
-
-
- H.-T. Ding (CCNU) Z. Lin (Columbia) R. Sugar (UCSB)
-
-
-
-
-
-
-
- C. DeTar (Utah) L. Levkova (Utah) R. Soltz (LLNL)
	-
- S. Gottlieb (Indiana) R. Mawhinney (Columbia) D. Toussaint (Arizona)
- R. Gupta (LANL) S. Mukherjee (BNL) P. Vranas (LLNL)
- A. Bazavov (Iowa) P. Hegde (CCNU) P. Petreczky (BNL)
	-
- M. Buchoff (LLNL) C. Jung (BNL) C. Schmidt (Bielefeld)
- M. Cheng (Boston) F. Karsch (BNL) C. Schroeder (LLNL)
- N. Christ (Columbia) E. Laermann (Bielefeld) W. Soeldner (Regensburg)
	-
	-
	-
	-
	- M. Wagner (Indiana)

Quark-Gluon Plasma

- \triangleright Transition to the high-temperature phase of QCD, Quark-Gluon Plasma (QGP) is a crossover at $T_c \sim 154$ MeV¹
- \triangleright The deconfinement of the degrees of freedom with quantum numbers of quarks and gluons is manifested in the QGP equation of state, i.e. $p(T)$ or $\varepsilon(T)$
- \triangleright The heavy-ion experiments at RHIC explore temperatures in the region of 300 MeV and at LHC around 400 MeV, with almost zero net baryon density at high center-of-mass energies
- \triangleright We calculate the QCD equation of state in the 130 $-$ 400 MeV range at zero baryon chemical potential, $\mu_B = 0$
- ▶ Collisions at lower energies (e.g. RHIC Beam Energy Scan, future experiments at FAIR) produce systems with $\mu_B > 0$ and the equation state at $O(\mu_B^4)$ is also being studied with the Taylor expansion method (talk by Prasad Hegde, Tuesday)

¹Aoki et al. [BW] (2010), Bazavov et al. [HotQCD] (2012)

Lattice QCD

- \triangleright Quantum field theory on a discrete (Euclidean) space-time lattice, $N_s^3 \times N_\tau$, $T = 1/(aN_\tau)$
- \triangleright Evaluate path integrals stochastically (importance sampling)

$$
Z = \int DUD\overline{\psi}D\psi \exp\{-S\}, S = S_g + S_f
$$

$$
\langle O \rangle = \frac{1}{Z} \int DUD\overline{\psi}D\psi O \exp\{-S\}
$$

- \blacktriangleright We use Highly Improved Staggered Quarks (HISQ)² and the tree-level Symanzik-improved gauge action, hence HISQ/tree
- **►** The physics is recovered in the continuum limit ($a \rightarrow 0$, or $N_\tau \rightarrow \infty$ in the finite-temperature geometry)
- \blacktriangleright The trace anomaly or interaction measure:

$$
\varepsilon - 3p = -\frac{T}{V}\frac{d\ln Z}{d\ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p}{T_0^4} = \int_{T_0}^{T} dT' \frac{\varepsilon - 3p}{T'^5}
$$

²Follana et al. [HPQCD] (2007)

HISQ/tree – numerical setup

 \triangleright Calculation of the interaction measure requires subtraction of UV divergences (take difference of zero- and finite-temperature quantities evaluated at the same values of the gauge coupling):

$$
\frac{\varepsilon - 3p}{T^4} = R_{\beta}[\langle S_g \rangle_0 - \langle S_g \rangle_T]
$$

- $R_{\beta}R_m[2m_I(\langle \overline{I}I \rangle_0 - \langle \overline{I}I \rangle_T) + m_s(\langle \overline{s}s \rangle_0 - \langle \overline{s}s \rangle_T)]$
 $R_{\beta}(\beta) = -a\frac{d\beta}{da}, \quad R_m(\beta) = \frac{1}{m}\frac{dm}{d\beta}, \quad \beta = \frac{10}{g^2}$

- Ine of constant physics $m_l = m_s/20$ (physical $m_l = m_s/27$), $m_\pi = 160$ MeV
- \triangleright Statistics (in molecular dynamics time units):

HISQ/tree - scale setting

Sommer scale, $r_1 = 0.31$ fm (derived requiring that f_π is at the experimental value $^3)$ 2 d $\mathsf{V}_{\bar{q}q}$ $\overline{}$

- Left: static quark anti-quark potential
- Right: lattice scale a/r_1 as function of the inverse gauge coupling β , normalized by the perturbative 2-loop result

³MILC, PoS(Lat2010)

► Cutoff effects for the HISQ/tree action at the leading order $\sim 1/N_{\tau}^2$

- \triangleright They change with temperature: the approach to the continuum at low temperatures is from below and in the peak region from above
- $N_\tau=6$ seems outside of the $1/N_\tau^2$ scaling regime

 \blacktriangleright Left: gluon contribution

$$
\left(\frac{\varepsilon-3p}{T^4}\right)_G=R_\beta\left[\langle S_g\rangle_0-\langle S_g\rangle_T\right]
$$

 \blacktriangleright Right: (valence) quark contribution

$$
\left(\frac{\varepsilon-3p}{T^4}\right)_{F} = -R_{\beta}R_{m}[2m_{l}(\langle \bar{l}l\rangle_{0} - \langle \bar{l}l\rangle_{T}) + m_{s}(\langle \bar{s}s\rangle_{0} - \langle \bar{s}s\rangle_{T})]
$$

- \triangleright To perform the continuum extrapolation need to interpolate the data at each N_{τ}
- \triangleright Fit the data with cubic splines, where the knot positions are the fit parameters, determined by χ^2 minimization
- \triangleright Combine spline fitting with the continuum extrapolation and use the form:

$$
\frac{\varepsilon-3p}{T^4}=A+\frac{B}{N_{\tau}^2}+\sum_{i=1}^5\left[C_i+\frac{D_i}{N_{\tau}^2}\right]S_i(T)
$$

to simultaneously fit the data at $N_\tau = 8$, 10 and 12

- \blacktriangleright $S_i(T)$ are B-splines
- \triangleright Add the Hadron Resonance Gas model value for the interaction measure and its slope at $T = 130$ MeV as a constraint
- \triangleright The fit uses two internal knots and has overall 37 degrees of freedom, giving $\chi^2/dof = 0.838$
- \triangleright Final errors include bootstrap errors on the fit and 2% errors on the scale determination, added linearly

HISQ/tree data at $N_\tau = 6$, 8, 10 and 12

HISQ/tree data and the continuum extrapolation

HISQ/tree and stout (Borsanyi et al. [BW] (2014)) continuum extrapolation

Interaction measure at low temperature

 \triangleright Taste symmetry breaking makes the average pion mass heavier, the problem is worse on coarser lattices

- Left: root-mean-squared pion mass as function of lattice spacing
- Right: the interaction measure at low temperature

Pressure and the energy density

- \triangleright Left: pressure, calculated as an integral of the interaction measure, starting from the Hadron Resonance Gas model value at $T = 130$ MeV
- \triangleright Right: the energy density, calculated as a linear combination of pressure and the interaction measure
- \triangleright The errors are from bootstrap analysis

Entropy and the velocity of sound

- \blacktriangleright Left: the entropy density $s/T^3=(p+\varepsilon)/T^4$
- \blacktriangleright Right: the velocity of sound, $c_s^2 = dp/d\varepsilon$
- \blacktriangleright The errors are from bootstrap analysis

Conclusion

- \triangleright We calculate the interaction measure on the lattice at several values of the cutoff $1/N_\tau = 1/6$, $1/8$, $1/10$ and $1/12$ in the temperature range $T = 130 - 400$ MeV
- \triangleright The HISQ/tree action has reduced (compared to other staggered fermion schemes) cutoff effects at low temperature
- ► The leading cutoff effects are $\sim 1/N_\tau^2$ and depend on the temperature, the data at $N_\tau = 6$ is not in the scaling regime
- \triangleright Our analysis performs fitting of the data at fixed cutoff and the continuum extrapolation in $1/N_\tau^2$ simultaneously
- \triangleright The HISQ/tree continuum extrapolation for the interaction measure $(\varepsilon-3p)/\mathit{T}^4$ agrees with the stout result within errors
- \triangleright With the integral method we calculate the pressure, choosing the Hadron Resonance Gas value at $T = 130$ MeV as reference point
- \triangleright We also calculate the energy and entropy density and the velocity of sound, the latter acquires minimum at $T \sim 146$ MeV

Extra

T_c determination, staggered

- \triangleright Combined extrapolation using asqtad and HISQ data sets
- \triangleright The final result for the chiral transition temperature at the physical quark masses in the continuum limit

$$
T_c=154\pm9~\text{MeV}
$$

T_c determination, domain-wall

- Disconnected chiral susceptibility
- \blacktriangleright The crossover temperature with DWF: $T_c = 155(1)(8)$ MeV (1402.5175), confirms staggered result

HISQ/tree - scale setting

Fit a/r_1 data with the Ansatz:

$$
\frac{a}{r_1}=\frac{c_0f(\beta)+c_2(10/\beta)f^3(\beta)}{1+d_2(10/\beta)f^2(\beta)},
$$

$$
f(\beta) = (b_0(10/\beta))^{-b_1/(2b_0^2)} \exp(-\beta/(20b_0))
$$

$$
c_0 = 43.1281 \pm 0.2868
$$

$$
c_2 = 343236 \pm 41191
$$

$$
d_2 = 5513.84 \pm 754.821
$$

Current HISQ/tree and previous HotQCD result (2009) with the asqtad and p4 action at $m_l = m_s/10$ LCP