Concept and performance of the Silicon Tracking System for the CBM experiment at FAIR Minni Singla, for the CBM Collaboration

The CBM experiment and its Technical Challenges

Compressed Baryonic Matter experiment:

- stationary target
- 2 45 AGeV
- > explore QCD phase diagram the region of densities moderate baryon high and temperatures
- > study of the equation-of-state of nuclear matter at high densities
- search for the de-confinement & chiral phase transitions

rare probes:

→ require upto10MHz Au+Au reactions/sec

CBM

- → ~700 charged particles per collision
- → fast and radiation hard detectors
- → low material budget to reduce multiple scattering
- → free-streaming fast readout electronics
- \rightarrow high speed data acquisition and high

> measure both bulk observables & rare diagnostic probes (charmed particles, vector mesons)

performance computer farm for online event selection

Silicon Tracking System

- coverage
 - rapitidies from center-of mass to close to beam - aperture $2.5^{\circ} < \Theta < 25^{\circ}$
- low material budget large-area detector - high-resolution momentum determination - track matching into MVD and RICH/MUCH
- momentum resolution
 - $-\delta p/p \cong 1\%$
 - field integral 1 Tm
 - material budget per station $\sim 1\% X_0$
- 25 µm single-hit spatial resolution
- efficient hit & track reconstruction -close to 100% hit and tracking efficiency
- read-out
 - self-triggering read-out
 - signal shaping time < 20 ns
 - no pile-up

layout of STS stations

STS 1 and 2 STS 3 and 4

STS 5 and 6 STS 7 and 8

- fast free-streaming readout – online event selection

material Budget Distribution in station 20--30

- stations arranged in 4 duplets
- first stations enlarged in horizontal axis (for low momentum particles)
- granularity according to the hit densities
- 8 tracking stations
- double-sided micro-strip silicon sensors
- minimized number of channels
- minimized material budget
- read-out electronics outside the physics aperture

Radiation Environment

STS 1, 30 cm

n_{ea}/cm²/1month 1e+14

FLUKA calculation for non-ionizing dose

- delta electrons included
- extreme case (1 month run)
- Au + Au collision at 35 AGeV
- compatible with the CBM physics program
- $-1 \times 10^{13} n_{eq}/cm^2$ (SIS100)
- $-1 \times 10^{14} n_{eq}/cm^2 (SIS300)$
- replacement of sensors after exposure to the fluence of $1 \times 10^{14} n_{eq}/cm^2$
- highest Fluence $(1 \times 10^{14} n_{eq}/cm^2)$ up to

10% of sensors

Cluster size in ST

8.01[%]

mean: 2.7

