Bose-Einstein correlation measurements at CMS

Sunil Manohar Dogra (IFT-UNESP)

for the CMS Collaboration Quark Matter Conference, Darmstadt 21st May, 2014

Quark Matter 2014, Darmstadt

Bose-Einstein Correlations – Basics

 Detecting two identical Bosons emitted from sources 1 & 2 at A & B

 Two-Boson correlation function → reflects length of homogeneity – Correlation function:

$$q_{inv}^2 = -(k_1 - k_2)^2$$

Correlation Function – Fitting Parameterizations

1-D Correlation function (q_{inv})

 $C_{BE}(q_{\text{inv}}) = 1 + \lambda \exp[-q_{\text{inv}}R]$

• 2-D Correlation function (q_I, q_t) (stretched exponential)

 $C_{BE}(q_l, q_t) = 1 + \lambda \exp[-\sqrt{(q_l R_l)^2 + (q_t R_t)^2}]$

 3-D Correlation function (q_I, q_s, q_o) (stretched exponential) (Bertsch-Pratt variables)

$$C_{BE}(q_l, q_s, q_o) = 1 + \lambda \exp\left[-\sqrt{(q_l R_l)^2 + (q_s R_s)^2 + (q_o R_o)^2}\right]$$

- $q_o \rightarrow$ Component of q_t parallel to $k_T = |p_{T1} + p_{T2}|/2$
- $q_s \rightarrow Component of q_t orthogonal to k_T$

Data Sample and Particle Identification

• Data used :

- pp √s = 0.9, 2.76, 7 TeV
- pPb \sqrt{s}_{NN} = 5.02 TeV
- PbPb $\sqrt{s_{NN}}$ = 2.76 TeV (60-100%)
- Used particles with |η| <1
- **Tracking** : Excellent tracking performance, for pions down to $p_T = 0.1 \text{ GeV/c}$
- PID : Ionization energy loss rate (Inε)
 - Momentum range p < 1.15 GeV/c (pions , kaons)
 - p < 2 GeV/c (protons)</p>
- **High purity** identified particles (> 99.5%)

Sunil M. Dogra

Method

• Experimentally → Correlation function

 $C_2(\mathbf{q}) = \frac{N_{\text{signal}}}{N_{\text{bckgnd}}} \xrightarrow{\rightarrow} \text{Identical particles from same event}$ $\xrightarrow{\rightarrow} \text{Mixed events}$

- Coulomb: full formula
- Cluster contributions
 - Mini-jet,
 - Multi-body decay or resonances
- Unlike-sign (+-) pairs used to constrain the shape of the cluster contribution to like-sign (±±) pairs
- Systematics
 - Mixed Events
 - Cluster contributions
 - Fitting range

Fully Corrected Correlation

0

0.2

0.4

Sunil M. Dogra

0.6

0.8

q_{inv} [GeV/c]

1

1.2

1.4

 $[(q_1 R_1)^2 + (q_t R_t)^2]^{1/2}$

6

8

10

2

0

6

 $[(q_1 R_1)^2 + (q_0 R_0)^2 + (q_s R_s)^2]^{1/2}$

8

2

0

10

One Dimensional Results : Pions & Kaons

• One- dimension $C_{BE}(q_{inv})$ – exponential fit

- − R for pions and kaons \rightarrow increase with N_{tracks} for all systems and center of mass energies
- Small increase for kaons compared to pions: long lived resonances and re-scattering

Two Dimensional Results: Pions

- Two-dimensional C_{BE}(R_I, R_t) (*stretched* exponential fit)
 - pp and pPb: $R_l > R_t \rightarrow$ elongated source in the beam direction in pp and pPb collisions
 - − For peripheral PbPb: $R_1 \approx R_t \rightarrow$ spherical source

Three Dimensional Results: Pions

CMS PAS HIN-14-013

- Three-dimensional $C_{BE}(R_I, R_S, R_o)$ (*stretched* exponential fit)
 - − For pp and pPb: $R_1 > R_S > R_o \rightarrow$ elongated source in the beam direction
 - − For peripheral PbPb: $R_I \approx R_s \approx R_o \rightarrow approximately spherical source$
- Large difference observed between PbPb and pPb for R_o
 - Possible lifetime of the source

Quark Matter 2014, Darmstadt

k_T Dependence

CMS PAS HIN-14-013

- Three-dimensional $C_{BE}(R_I, R_S, R_o)$ (*stretched* exponential fit)
 - R_{I} , R_{s} , $R_{o} \rightarrow$ decrease with increase in k_{T}
 - Similar behavior for all system and at all center of mass energies

Scaling Properties in N_{tracks} and k_T

- Pion radii
 - Increase with increasing N_{tracks}
 - Decrease with increasing \boldsymbol{k}_{T}
 - Dependence on N_{tracks} and k_{T} factorizes:

 $R_{param} (N_{tracks}, k_T) = [a^2 + (bN_{tracks}^{\beta})^2]^{1/2} \cdot (0.2 GeV/c/k_T)^{\gamma}$

- For a given R component → a (minimal radius) and γ are kept the same for all collision systems
- Identical parameters used for the three proton-proton energies
- All five systems are fit simultaneously
- Plotting as a function of N_{tracks}
 - Radius is scaled to $~{R_{measured}}^{*}~(1/0.45^{\gamma})$ / $(1/k_{T}^{-\gamma})$
- Plotting as a function of k_T
 - $R_{measured}/(R_{param}$ at the same N_{tracks} but at $k_T=0.45$)

k_T Scaling Properties

- R_{measured} (N_{tracks}, k_T) divided R_{param} (same multiplicity but k_T=0.45)
- All plots vs. k_T look similar but different slopes

See poster by Ferenc Sikler

Scaling Properties in 1D

 $R_{param} (N_{tracks}, k_T) = [a^2 + (bN_{tracks}^\beta)^2]^{1/2} \cdot (0.2GeV/c/k_T)^{\gamma}$

• Radius is scaled to $R_{measured}^* (1/0.45^{\gamma}) / (1/k_T^{\gamma})$

See poster by Ferenc Sikler

Scaling Properties in 2D

- In the low N_{tracks} limit → not sensitive to the type of system or to the colliding energy
- For all $N_{\mbox{tracks}},$ radii for pp and pPb are very similar

14

Scaling Properties in 3D

• R_I and $R_s \rightarrow$ very similar magnitudes and dependence on N_{tracks}

Scaling Properties in 3D

• $R_o \rightarrow$ some differences seen in the dependence on N_{tracks}

Summary

- Measured correlations \rightarrow best described by stretched exponential function
- Radius parameters \rightarrow from 1-5 fm
 - ✓ All the radii increase smoothly with N_{tracks}
 - \checkmark Highest values for pPb and peripheral PbPb (large system)
 - \checkmark Small increase for kaons compared to pions
 - \checkmark Radius parameter decrease with increasing k_T
 - ✓ Radius parameters for pp and pPb are same for similar N_{tracks}
- ✓ For two- and three-dimensions in pp and pPb
 - ✓ $R_1 > R_t$ ✓ $R_1 > R_s > R_0$ source is elongated in the beam direction in pp and pPb collisions
- \checkmark In peripheral PbPb collisions, R_o differs from that seen in pp, pPb, possibly indicating the different life time of the source created in such collisions

- Results Presented:
 - CMS PAS HIN-14-013
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u>
 <u>PhysicsResultsHIN14013</u>
- Poster: Ferenc Sikler

Back Up

 $K(q_{\rm inv}) = G(\eta) \left[1 + \frac{\pi \eta q_{\rm inv} R}{1.26 + q_{\rm inv} R}\right]$ $C_2^{+-}(q_{\rm inv}) = c K^{+-}(q_{\rm inv}) \left[1 + \frac{b}{\sigma_b \sqrt{2\pi}} \exp(-\frac{q_{\rm inv}^2}{2\sigma^2})\right]$ $C_2^{\pm\pm}(q_{\rm inv}) = c K^{\pm\pm}(q_{\rm inv}) \left[1 + z(N_{\rm rec}) \frac{b}{\sigma_b \sqrt{\pi}} \exp(-\frac{q_{\rm inv}^2}{2\sigma^2})\right] C_{BE}(q_{\rm inv})$

