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Soft QCD matter and hard probes

Hard-scatterings produce ‘quasi-free’ partons 
⇒ Initial-state production known from pQCD 

⇒ Probe medium through energy loss

Heavy-ion collisions produce 
QCD matter 

Dominated by soft partons  
p ~ T ~ 100-300 MeV

‘Hard Probes’: sensitive to medium density, transport properties
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Hard processes in QCD
• Hard process: scale Q >> ΛQCD 

• Hard scattering High-pT parton(photon) Q ~ pT 

• Heavy flavour production m >> ΛQCD

Cross section calculation can be split into  
• Hard part: perturbative matrix element 
• Soft part: parton density (PDF), fragmentation (FF)

Soft parts, PDF, FF are universal: independent of hard process

QM interference between hard and soft suppressed (by Q2/Λ2 ‘Higher Twist’) 
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Singularities in pQCD

Closely related to hadronisation effects

(massless case)

Soft divergence Collinear divergence
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Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons (‘jets’)



Initial state: p+Pb
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Parton density distribution
pp, low Q2: valence structure

Valence quarks (p = uud) 
x ~ 1/3

Soft gluons

Enhancement  
at intermediate x:  
‘anti-shadowing’

Low-x suppression:  
shadowing

gluons, Q2 = 1.69 GeV2

Nuclei: ratio to pp

Effects largest at low Q2



Hadron RpPb at LHC
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Parton kinematics and x ranges
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Incoming parton

larger x

Incoming parton

smaller x

outgoing parton

outgoing parton

Two partons at large η,"
asymmetric collision:  

large x + small x parton
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Varying x in p+Pb: di-jets
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CMS, arXiv:1401.4433
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Note on centrality/geometry
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Pb

p

RpPb =
1
Ncoll

dNpPb / dpT
dNpp / dpT

Standard tool: multiplicity binning

Centrality: would like to vary  
impact parameter in experiment

Use geometrical model (Glauber) 
to calculate Ncoll

Ncoll fluctuations within the same centrality class are large!



p+Pb centrality II
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Interplay between Npart  
and higher multiplicity in"
individual NN collisions

Forward+backward multiplicity

Forward multiplicity

Biases affect estimation of Ncoll,  
value of ‘RpPb’
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pp: LHC data vs PDF+pQCD+FF
d’E

nterria et al, arX
iv:1311.1415

Kretzer fragmentation
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Mostly due to uncertainty in gluons: next step: use data to constrain gluon FF

Also note: large scale uncertainties at pT < 5 GeV



A+A: Parton energy loss
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Nuclear modification factor RAA
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Spectra and RAA at RHIC to LHC
RHIC: 200 GeV 
LHC: 2.76 TeV  per nucleon pair

Energy ~14 x higher

LHC: spectrum less steep,  
larger pT reach
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From RHIC to LHC
RHIC LHC

RHIC: n ~ 8.2 LHC: n ~ 6.4

( ) 20.023.01 2.6 =− ( ) 32.023.01 4.4 =−

NB: this is not a model, just ‘getting a sense for the numbers’!

Similar RAA does not mean similar energy loss
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Towards a more complete picture

• Energy loss not single-valued, but a distribution 
• Geometry: density profile; path length distribution 
• Energy loss is partonic, not hadronic 

– Full  modeling: medium modified shower 
– Simple ansatz for leading hadrons: energy loss 

followed by fragmentation 
– Quark/gluon differences

Most modern calculations take these things  
into account at some level"

(Don’t buy a model without these…)
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Situation at RHIC, ca 2008
B

ass et al, P
R

C
79, 024901ASW: 

HT: 
AMY:

/fmGeV2010ˆ 2−=q
/fmGeV5.43.2ˆ 2−=q

/fmGeV4ˆ 2≈q

Large density: 
AMY: T ~ 400 MeV 
Transverse kick: qL ~ 10-20 GeV

Large uncertainty in  
absolute medium density

P
H

E
N

IX
, arX

iv:1208.2254

3 main calculations; comparison  
with same medium density profile

One aspect: scattering potential/momentum transfer;  
see recent work by Majumder, Laine, Rothkopf on lattice
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RAA at LHC & models

ALICE: arXiv:1208.2711 
CMS: arXiv:1202.2554

Broad agreement 
between models and 

LHC RAA

Extrapolation from RHIC 
tends to give too much 

suppression at LHC

Many model curves: need more constraints and/or selection of models



22

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios: 
1) In-cone radiation: RAA = 1, change of fragmentation 
2) Out-of-cone radiation: RAA < 1
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Jets at LHC
ALICE

η

ϕ

Transverse energy map of 1 event

Clear peaks: jets of fragments  
from high-energy quarks and gluons
And a lot of uncorrelated ‘soft’ background
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PbPb jet background

Cacciari et al

Background density vs multiplicity

η-ϕ space filled with jets 
Many ‘background jets’

Background contributes up to ~180 GeV per unit area

Statistical fluctuations remain after subtraction

Subtract background: App raw
jetT

sub
jetT ρ−= ,,

Jet finding illustration
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Jet energy asymmetry
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Large asymmetry seen  
for central events

However: 
• Only measures reconstructed di-jets (don’t see lost jets) 
• Not corrected for fluctuations from detector+background 
• Both jets are interacting – No simple observable 

Suggests large energy loss: many GeV 
~ compatible with expectations from RHIC+theory

jet-jet 𝛾-jet
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persists to high pT > 300 GeV/c
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PbPb jet background

Toy Model

Jet spectra are corrected for background fluctuations by unfolding

Size of fluctuations depends on pT cut, cone radius
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Pb+Pb jet RCP

Jet RAA, RCP measured by 
ATLAS, ALICE, CMS

RAA < 1: not all produced jets are seen;  
out-of-cone radiation and/or ‘absorption’

For jet energies up to ~250 GeV; energy loss is a very large effect

ATLAS+CMS: hadron+EM jets

Good agreement 
between experiments

20 30 40 50 60 70 80 90

  
  

C
P

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Central: 0-10%

Peripheral: 50-80%

ALICE

=2.76 TeV
NN

sPb-Pb 

Charged Jets

 = 0.3R TkAnti-

c > 0.15 GeV/track

T
p

 > 5 GeV/c
T

pLeading track 

shape uncertainty
correlated uncertainty

20 30 40 50 60 70 80 90

  
  

C
P

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Central: 10-30%

Peripheral: 50-80%

shape uncertainty
correlated uncertainty

)c (GeV/
T,ch jet

p
20 30 40 50 60 70 80 90

  
  

C
P

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Central: 30-50%

Peripheral: 50-80%

shape uncertainty
correlated uncertainty

ALI−PUB−64273

ALIC
E arXiv:1311.0633

Charged jet RCP

Centrality dependence:  
RAA decreases towards central



Comparing hadrons and jets
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Jet broadening: R dependence of RAA
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However, R = 0.5 still has RAA < 1 
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Changes in fragmentation 
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"
PAS C

M
S-H

IN
-12-013

0-10%
CMS preliminary

Longitudinal  
fragment distributions

C
M

S
, arX

iv:1310.0878

Transverse 
fragment distributions

Enhancement at large R, low pT

No modification at small R, large pT: physics or auto-correlation?



Again: background fluctuations
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Toy model spectrum

At fixed pT: pick up  
above-average background contributions"
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Background fluctuations  
migrate yield to higher pT"

Fragment distributions (simulation)

ξ ≳ 4 ⇔ pT ≲ 2 GeV 



Jet Quenching Summary I

• So, jet RAA is not close to 1"
• Large out-of-cone radiation, low pT, large angles"
• NB: even the fragmentation measurements do not capture the 

‘initial energy’

32

What is the (dominant) mechanism?"
Several lines of investigation"

"
- No angular ordering the the medium; large angle radiation allowed 

(Mehtar-Tani, Salgado, Tywoniuk)"
- Interplay of scales: medium density/mean free path vs opening angle of 

radiation"
- Multiple interactions ‘thermalise’ the radiation (Renk, Wiedemann, Caselderrey-

Solana)"
- Kinematics, (trigger-)biases also play a role"

- Thorsten Renk: effect of Angular Ordering is small in Pythia



Comparing to energy loss models

R=0.2

R=0.3 (×10−1)
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ATLAS data
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JEWEL gets the right suppression for R=0.2,"
but not the increase with R"

(Treatment of recoil partons?)

JEWEL: RCP vs R
Jet observables: need explicit modelling of multi-particle final states

Mehtar-Tani, Tywoniuk, arXiv:1401.8293

Fragment distributions sensitive  
to coherence effects  

(NB: no geometry model yet)
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"
      
       

Centrality and reaction plane biases: 
• Finite, but only weak trigger pT dependence for high pT

trig

Jet trigger

Hadron trigger

Hadron trigger vs jet trigger

Hadron trigger: strong “surface bias”  
maximizes recoil path length

Full jet trigger: no geom. bias 
partially cancelled by bkg fluctuations

T.R
enk, P

R
C

85 064908

Question: if hadron and jet RAA are similar,  
are the biases similar as well?



Geometry and path length

Motivation: mechanisms"
• Elastic L"
• Radiative L2"
• Strong coupling L3

2ˆ~ LqE Smed αΔ
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Geometry: unfortunately not a brick
lnitial profile: Glauber density

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion: medium dilutes  
while parton propagates 
⇒ Large effect

Difference 1/𝜏 vs Hydro

Energy loss formalisms derived for constant density, L"
- Correct treatment of expanding medium unknown (Interference!) 
- Most tractable in parton transport/MC models (JEWEL, BAMPS)
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RAA vs ϕ and elastic eloss
T. R

enk, P
R

C
76, 064905, J. A

uvinen et al, P
R

C
82, 051901

Elastic E-loss gives 
small v2

Data require L2 or  
stronger path length  

dependence

However, also quite sensitive to medium density evolution

In Plane

Out of Plane



Azimuthal modulation of jet yield
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ATLAS data
JEWEL+PYTHIA
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JEWEL: MC sampling of Bjorken-expanding Glauber profile
Reproduces observed azimuthal modulation of jet yield

Zapp, arXiv:1312.5536



Exploring path length dependence
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‘Minimalistic’ model; try to capture the main physics 
and see which observables are sensitive

Fragment distribution  
sensitive to L dependence?

q/g ratio depends  
on energy loss mech + L

Solana et al, arXiv:1405.3864



An unexpected angle on path length 
dependence: di-hadron correlations
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Path length II: ‘surface bias’
Near side trigger,  

biases to small E-loss

Away-side large L

Away-side (recoil) suppression IAA samples longer path-lengths  
than inclusive RAA 

In detail: Balance between surface bias and medium expansion
NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil) 

Combinatorial 
background



42

Di-hadron modeling
T. R

enk, P
R

C
, arX

iv:1106.1740

L2 (ASW) fits data 
L3 (AdS) slightly below

Modified shower  
generates increase at low zT

L (YaJEM): too little suppresion 
L2 (YaJEM-D) slightly above

Model ‘calibrated’ on single hadron RAA
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Recoil Jet ΔIAA
PYTHIA

Similar ΔIAA
PYTHIA for R=0.2 and R=0.4

R=0.2

No visible broadening within R=0.4
(within exp uncertainties)

High-pT trigger hadron, recoil jet:"
• Data-driven background subtraction"
• Corrected for bkg fluctuations  

and detector effects

Recoil suppression less  
than inclusive"

(similar for hadrons) R=0.4
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JEWEL ΔIAA~0.4, below measured 
YAJEM agrees with measurement

Model comparison IAA

JEWEL: Zapp et al., EPJ C69, 617

JEWEL correctly describes 
inclusive jet RAA
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NN

sPb-Pb 0-20% 

ALI−DER−44225

Difference in energy loss or geometry?



Summary

• p+Pb: mostly reference for high-pT production"
• Effects of nuclear PDFs generally small, but visible in e.g. di-jet η"
• Centrality not well understood: interesting biases/selection effects"

• PbPb energy loss — medium density"
• Absolute normalisation of relation medium density — energy loss not known"

• Jets lose energy in the QGP"
• Everything points to large angle radiation at low pT"
• Mechanism not clarified; under study (antenna radiation; MCs etc)"

• Path length dependence physically interesting"
• Modelling difficult; mapping to static medium not quantitatively understood"
• JEWEL, YaJEM seem to get most of the features right — implies radiative

+elastic energy loss (L to L2 in a static medium)

45

Expect discussions on all of these topics at QM

Hard probes: use pQCD to learn about the QGP
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Generic expectations from energy loss

• Longitudinal modification: 
– out-of-cone ⇒ energy lost, suppression of yield, di-jet energy 

imbalance 
– in-cone ⇒ softening of fragmentation 

• Transverse modification 
– out-of-cone ⇒ increase acoplanarity kT 

– in-cone ⇒ broadening of jet-profile

λ

kT~µEjet

fragmentation 
 after energy loss?
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A consistent view of jet quenching

Consistent with 2010 result 
"
Recall (2010 vs 2011): 
•Track pT > 4 GeV vs pT > 1 GeV 
•Leading vs inclusive jet 
•0-30% vs 0-10% and 10-30%

2010 data: arXiv:1205.5872

arXiv:1205.5872

Change  
from  

“ξ” to “pT” 

P
bP

b 
– 

pp
 (1

/G
eV

)

Broadening/excess at 
large r, low pT 

"
(~2% of jet energy)

Narrowing/depletion 
at intermediate r, pT

No change at 
small r, high pT

Radius r

G. Roland@QM2012



48

A consistent view of jet quenching

Charged particles from 
 pT =50-100 GeV:  

z = pT(track)/pT(jet) = 0.4-0.6  
ξ < 1

Looking at the same  
parton pT range

Consistent message from charged hadron RAA, 
 inclusive jet RAA and fragmentation functions!

PbPb fragmentation function = pp  for ξ <1

G. Roland@QM2012
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G. de Barros et al., arXiv:1208.1518

pT,jet< 20 GeV/c:  
No change with trigger pT 

Combinatorial background

Hadron-triggered recoil jet distributions

pT,jet> 20 GeV/c:  
Evolves with trigger pT 

Recoil jet spectrum
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Remove background by 
subtracting spectrum with 
lower pT

trig:  

Δrecoil =[(20-50)-(15-20)]    

Reference spectrum (15-20) 
scaled by ~0.96 to account for 

conservation of jet density

Background subtraction: Δrecoil

Unfolding correction for background fluctuations and detector response

Δrecoil measures the change of the recoil spectrum with pT
trig
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Dihadron yield suppression

Away-side: Suppressed by factor 4-5  
⇒ large energy loss

Near side Away side

STAR PRL 95, 152301

8 < pT,trig < 15 GeV

Yield of additional 
particles in the jet

Yield in balancing  
jet,  after energy loss

Near side: No modification  
⇒ Fragmentation outside medium?

Near side 
associated

trigger

Away side associated

trigger
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Di-hadrons and single hadrons at LHC

Need simultaneous comparison to  
several measurements  

to constrain geometry and E-loss

Here: RAA and IAA

Three models: 
ASW: radiative energy loss 
YaJEM: medium-induced virtuality 
YaJEM-D: YaJEM with L-dependent  
                 virtuality cut-off (induces L2)
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Hadrons vs jets II: recoil

P
R

L108 092301

Hadrons Jets

Hadron IAA = 0.5-0.6
In approx. agreement with models;  
elastic E-loss would give larger IAA

Jet IAA = 0.7-0.8
Jet IAA > hadron IAA 
Not unreasonable

NB/caveat: very different momentum scales !
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Modelling azimuthal dependence
A. Majumder, PRC75, 021901

RAA

pT (GeV) pT (GeV)

RAA

RAA vs reaction plane sensitive to geometry model
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Path length dependence: RAA vs ϕ
PHENIX, arXiv:1208.2254

In Plane

Out of Plane

Suppression depends on angle, path length
Not so easy to model: calculations give different results



Reaction plane dependence at LHC: High-pT v2
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Model: B. Betz, M. Gyulassy, arXiv:1201.0281	
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CMS, arXiv:1204.1850

Reasonable agreement between calculation  
and data for pT > 10 GeV"
(NB: simplified geometry, E-loss; 
 paper claims scale-dependence of 𝛼s main effect)
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Medium-induced radition

If λ < τf, multiple scatterings  
add coherently

2ˆ~ LqE Smed αΔ

2
2
T

f k
ω

τ =

Zapp, QM09

Lc = τf,max
propagating  

parton

radiated 
gluon

Landau-Pomeranchuk-Migdal effect 
Formation time important

Radiation sees  
length ~τf at once

Energy loss depends on density:
ρ

λ
1

∝

λ

2

ˆ
⊥

≡
q

q

and nature of scattering centers 
(scattering cross section)

Transport coefficient
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Large angle radiation
Emitted gluon distribution 

Opacity expansion

Calculated gluon spectrum extends to large k⊥ at small k 
Outside kinematic limits

kT < k

GLV, ASW, HT cut this off ‘by hand’

Gluon momentum k (GeV)
G

lu
on

 p
er

p 
m

om
en

tu
m

 k
⊥
 (G

eV
)
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Getting a sense for the numbers – RHIC

Oversimplified calculation: 
-Fit pp with power law 
-Apply energy shift or relative E loss 

Not even a model !

Ball-park numbers: ΔE/E ≈ 0.2, or ΔE ≈ 3 GeV  
for central collisions at RHIC

π0 spectra Nuclear modification factor

P
H

E
N

IX
, P

R
D

 76, 051106, arX
iv:0801.4020
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Path length I: centrality dependence

Modified frag: nucl-th/0701045 - H.Zhang, J.F. Owens, E. Wang, X.N. 
Wang

6 < pT trig < 10 GeV

Away-side suppressionRAA: inclusive suppression

B. Sahlmüller, QM08

O. Catu, QM2008

Inclusive and di-hadron suppression seem to scale with Npart

Comparing Cu+Cu and Au+Au
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Npart scaling?

PQM - Loizides – private 
communication

Geometry (thickness, area) of  
central Cu+Cu similar to peripheral Au+Au
Cannot disentangle density vs path length
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Background jets
Raw jet spectrum

Event-by-event background subtracted

Low pT: ‘combinatorial jets’ 
- Can be suppressed by requiring 

leading track 
- However: no strict distinction at 

low pT possible

Next step: Correct for background 
fluctuations and detector effects by 
unfolding/deconvolution
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Removing the combinatorial jets

Correct spectrum and remove combinatorial jets by unfolding

Results agree with biased jets: reliably recovers all jets and removed bkg

Raw jet spectrum Fully corrected jet spectrum

ALIC
E arXiv:1311.0633



Jet broadening: R dependence of RAA
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Jet RAA increases with R (but slowly)
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Jet fragment distributions
PbPb measurement Ratio to pp

Low pT enhancement: 
soft radiation 

Intermediate z: 
depletion: E-lossNB: z is wrt observed Ejet ≠ initial Eparton

ATLA
S

 M
.R

ybar@
Q

M
12

M. Rybar@QM2012
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Jet broadening: transverse fragment distributions

PbPb PbPb

C
M

S
 PA

S
 H

IN
-12-013

Jet broadening: radiation at large angles

C
M

S
, arX

iv:1310.0878
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Jet broadening: R dependence
Ratio of spectra with different R

Larger jet cone: 
‘catch’ more radiation 
! Jet broadening

However, R = 0.5 still has RAA < 1 
– Hard to see/measure the radiated energy
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Initial state effects: nPDFs
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nPDF results shown as ratio to proton

Valence quarks"
u-u + d-d

Low-x suppression:  
shadowing

Sea quarks"
u+u + d+d Gluons

Enhancement  
at intermediate x:  
‘anti-shadowing’

Sea quarks ‘follow’ gluons
Significant effects in gluons at low Q2"

No experimental information for small x  
(large uncertainty)



Effects of shadowing/anti-shadowing
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RdAu > 1 at intermediate pT 
could be anti-shadowing; 
shadowing at higher pT
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Photons: largest effect: isospin"
Shadowing (EKS98) has only  
small impact at mid-rap, higher pT



p+Pb centrality continued
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CL1

V0A
V0M

Nuclear modification with three different centrality measures

Central multiplicity Forward+backward multiplicity Forward multiplicity

Clear self-bias  
(measured range is  

selected range)

Strength of effect depends on classifier"

No clean experimental handle (yet) on geometry

Peripheral is suppressed:"
Suggests problem with centrality selection/Ncoll calculation


