Jets and high-p_T probes: recent results Marco van Leeuwen, Nikhef and Utrecht University

Student day, Quark Matter 2014

Soft QCD matter and hard probes

Hard-scatterings produce 'quasi-free' partons ⇒ Initial-state production known from pQCD ⇒ Probe medium through energy loss

'Hard Probes': sensitive to medium density, transport properties

Hard processes in QCD

- Hard process: scale Q >> Λ_{QCD}
- Hard scattering High- p_T parton(photon) Q ~ p_T
- Heavy flavour production m >> Λ_{QCD}

Factorization

Cross section calculation can be split into

- Hard part: perturbative matrix element
- Soft part: parton density (PDF), fragmentation (FF)

QM interference between hard and soft suppressed (by Q^2/Λ^2 'Higher Twist')

Soft parts, PDF, FF are *universal*: independent of hard process

Singularities in pQCD

Closely related to hadronisation effects

Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons ('jets')

Initial state: p+Pb

Parton density distribution

pp, low Q²: valence structure

Nuclei: ratio to pp

Hadron R_{pPb} at LHC

Parton kinematics and x ranges

$$x_2 = \frac{p_T}{\sqrt{s}} (e^{-\eta_3} + e^{-\eta_4})$$

LHC probes lower x than RHIC Midrapidity at LHC ~ forward rap at RHIC

Varying x in p+Pb: di-jets

NB: asymmetric beam energies: mid-rapidity is at η~0.4

Shift of distribution to larger η agrees with nPDF expectation

Di-jet eta in event activity bins

Non-trivial correlation with forward event activity: di-jet moves away from forward activity

Effect also depends on p_T

Standard tool: multiplicity binning

Use geometrical model (Glauber) to calculate N_{coll}

3/07/2013

30

N_{Coll}

$$R_{pPb} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{pPb} / dp_{T}}{dN_{pp} / dp_{T}}$$

N_{coll} fluctuations within the same centrality class are large!

p+Pb centrality II

 $Q_{pP_{b}} = dN^{pP_{b}}/dp_{\gamma} / (T_{pA}^{Glauber} d\sigma_{pp}/dp_{\gamma})$

2

0

Forward+backward multiplicity

Biases affect estimation of N_{coll}, value of 'R_{pPb}'

Interplay between N_{part} and higher multiplicity in individual NN collisions

pp: LHC data vs PDF+pQCD+FF

Factor ~2 spread of results due to FF parameterisations Mostly due to uncertainty in gluons: next step: use data to constrain gluon FF Also note: large scale uncertainties at $p_T < 5$ GeV

A+A: Parton energy loss

Nuclear modification factor R_{AA}

Measured R_{AA} is a ratio of yields at a given p_T The physical mechanism is energy loss; shift of yield to lower p_T

Spectra and *R*_{AA} at RHIC to LHC

 R_{AA} depends on *n*, steeper spectra, smaller R_{AA}

From RHIC to LHC

Similar R_{AA} does not mean similar energy loss NB: this is not a model, just 'getting a sense for the numbers'!

Towards a more complete picture

- Energy loss not single-valued, but a distribution
- Geometry: density profile; path length distribution
- Energy loss is partonic, not hadronic
 - Full modeling: medium modified shower
 - Simple ansatz for leading hadrons: energy loss followed by fragmentation
 - Quark/gluon differences

Most modern calculations take these things into account at some level (Don't buy a model without these...)

Situation at RHIC, ca 2008

3 main calculations; comparison with same medium density profile

ASW: $\hat{q} = 10 - 20 \text{ GeV}^2/\text{fm}$ HT: $\hat{q} = 2.3 - 4.5 \,\mathrm{GeV}^2/\mathrm{fm}$ AMY: $\hat{q} \approx 4 \,\mathrm{GeV}^2/\mathrm{fm}$

Large density: AMY: T ~ 400 MeV Transverse kick: qL ~ 10-20 GeV

Large uncertainty in absolute medium density

One aspect: scattering potential/momentum transfer; see recent work by Majumder, Laine, Rothkopf on lattice Bass

et al,

R_{AA} at LHC & models

ALICE: arXiv:1208.2711 CMS: arXiv:1202.2554

Many model curves: need more constraints and/or selection of models

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios:

- 1) In-cone radiation: $R_{AA} = 1$, change of fragmentation
- 2) Out-of-cone radiation: $R_{AA} < 1$

Jets at LHC

PbPb jet background

Background density vs multiplicity

Background contributes up to ~180 GeV per unit area Subtract background: $p_{T,jet}^{sub} = p_{T,jet}^{raw} - \rho A$ Statistical fluctuations remain after subtraction

Jet energy asymmetry

Suggests large energy loss: many GeV

- ~ compatible with expectations from RHIC+theory However:
 - Only measures reconstructed di-jets (don't see lost jets)
 - Not corrected for fluctuations from detector+background
 - Both jets are interacting No simple observable

PbPb jet background

Jet spectra are corrected for background fluctuations by unfolding

Size of fluctuations depends on p_T cut, cone radius

Pb+Pb jet R_{CP}

R_{AA} < 1: not all produced jets are seen; out-of-cone radiation and/or 'absorption' For jet energies up to ~250 GeV; energy loss is a very large effect

Comparing hadrons and jets

Suppression of hadron (leading fragment) and jet yield similar Is this 'natural'? No (visible) effect of in-cone radiation?

Jet broadening: R dependence of RAA

Larger jet cone: 'catch' more radiation \rightarrow Jet broadening

However, R = 0.5 still has $R_{AA} < 1$ – Hard to see/measure the radiated energy

Changes in fragmentation

No modification at small R, large p_T : physics or auto-correlation?

Again: background fluctuations

Background fluctuations migrate yield to higher p_T

At fixed p_T: pick up above-average background contributions

 $\xi \gtrsim 4 \Leftrightarrow p_T \lesssim 2 \text{ GeV}$

Jet Quenching Summary I

- So, jet R_{AA} is not close to 1
- Large out-of-cone radiation, low p_T , large angles
- NB: even the fragmentation measurements do not capture the 'initial energy'

What is the (dominant) mechanism? Several lines of investigation

- No angular ordering the the medium; large angle radiation allowed (Mehtar-Tani, Salgado, Tywoniuk)
 - Interplay of scales: medium density/mean free path vs opening angle of radiation
- Multiple interactions 'thermalise' the radiation (Renk, Wiedemann, Caselderrey-Solana)
- Kinematics, (trigger-)biases also play a role
 - Thorsten Renk: effect of Angular Ordering is small in Pythia

Comparing to energy loss models

Jet observables: need explicit modelling of multi-particle final states

JEWEL gets the right suppression for R=0.2, but not the increase with R (Treatment of recoil partons?)

Fragment distributions sensitive to coherence effects (NB: no geometry model yet)

Hadron trigger vs jet trigger

Question: if hadron and jet R_{AA} are similar, are the biases similar as well?

20-50 GeV Trigger, 0-10% 2.76 ATeV PbPb

Geometry and path length

Motivation: mechanisms

- Elastic L
- Radiative L^2 ΔE_m

$$\Delta E_{med} \sim \alpha_S \hat{q} L^2$$

• Strong coupling L^3

Geometry: unfortunately not a brick

Energy loss formalisms derived for constant density, L

- Correct treatment of expanding medium unknown (Interference!)
- Most tractable in parton transport/MC models (JEWEL, BAMPS)

R_{AA} vs ϕ and elastic eloss

However, also quite sensitive to medium density evolution

Azimuthal modulation of jet yield

JEWEL: MC sampling of Bjorken-expanding Glauber profile Reproduces observed azimuthal modulation of jet yield

Exploring path length dependence

'Minimalistic' model; try to capture the main physics and see which observables are sensitive

An unexpected angle on path length dependence: di-hadron correlations

Path length II: 'surface bias'

Away-side large L

Away-side (recoil) suppression I_{AA} samples longer path-lengths than inclusive R_{AA}

In detail: Balance between surface bias and medium expansion

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil)

Di-hadron modeling

Model 'calibrated' on single hadron R_{AA}

 L^2 (ASW) fits data L^3 (AdS) slightly below L (YaJEM): too little suppresion L^2 (YaJEM-D) slightly above Modified shower generates increase at low z_T

Recoil Jet ΔI_{AA}^{PYTHIA}

High-p⊤ trigger hadron, recoil jet:

- Data-driven background subtraction
- Corrected for bkg fluctuations and detector effects

Recoil suppression less than inclusive (similar for hadrons)

Similar ΔI_{AA}^{PYTHIA} for R=0.2 and R=0.4 No visible broadening within R=0.4 (within exp uncertainties)

Model comparison I_{AA}

JEWEL: Zapp et al., EPJ C69, 617

EWEL correctly describes inclusive jet R_{AA}

Difference in energy loss or geometry?

Summary

Hard probes: use pQCD to learn about the QGP

- p+Pb: mostly reference for high-p_T production
 - · Effects of nuclear PDFs generally small, but visible in e.g. di-jet η
 - Centrality not well understood: interesting biases/selection effects
- \cdot PbPb energy loss medium density
 - Absolute normalisation of relation medium density energy loss not known
- $\cdot\,$ Jets lose energy in the QGP
 - + Everything points to large angle radiation at low p_{T}
 - Mechanism not clarified; under study (antenna radiation; MCs etc)
- Path length dependence physically interesting
 - Modelling difficult; mapping to static medium not quantitatively understood
 - JEWEL, YaJEM seem to get most of the features right implies radiative +elastic energy loss (L to L^2 in a static medium)

Expect discussions on all of these topics at QM

Generic expectations from energy loss

- Longitudinal modification:
 - out-of-cone ⇒ energy lost, suppression of yield, di-jet energy imbalance
 - in-cone \Rightarrow softening of fragmentation
- Transverse modification
 - out-of-cone \Rightarrow increase acoplanarity k_T
 - in-cone \Rightarrow broadening of jet-profile

A consistent view of jet quenching

Consistent message from charged hadron R_{AA} , inclusive jet R_{AA} and fragmentation functions!

Hadron-triggered recoil jet distributions

G. de Barros et al., arXiv:1208.1518

Background subtraction: Δ_{recoil}

 Δ_{recoil} measures the change of the recoil spectrum with p_T^{trig}

Unfolding correction for background fluctuations and detector response

Dihadron yield suppression

Near side: No modification ⇒ Fragmentation outside medium? Away-side: Suppressed by factor 4-5 \Rightarrow large energy loss

Di-hadrons and single hadrons at LHC

Hadrons vs jets II: recoil

Hadron $I_{AA} = 0.5-0.6$

In approx. agreement with models; elastic E-loss would give larger I_{AA}

Jet $I_{AA} = 0.7-0.8$ Jet $I_{AA} >$ hadron I_{AA} Not unreasonable

NB/caveat: very different momentum scales !

Modelling azimuthal dependence

R_{AA} vs reaction plane sensitive to geometry model

Path length dependence: R_{AA} vs ϕ

PHENIX, arXiv:1208.2254

Suppression depends on angle, path length Not so easy to model: calculations give different results

Reaction plane dependence at LHC: High-p_T v₂

Medium-induced radition

Landau-Pomeranchuk-Migdal effect Formation time important

If $\lambda < \tau_f$, multiple scatterings add coherently

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Transport coefficient $\hat{q} = -$

Large angle radiation

Gluon momentum k (GeV) (V)

Calculated gluon spectrum extends to large k_{\perp} at small k Outside kinematic limits

GLV, ASW, HT cut this off 'by hand'

Getting a sense for the numbers – RHIC

Ball-park numbers: ∆E/E ≈ 0.2, or ∆E ≈ 3 GeV for central collisions at RHIC

Path length I: centrality dependence

Comparing Cu+Cu and Au+Au

R_{AA}: inclusive suppression

Away-side suppression

Inclusive and di-hadron suppression seem to scale with N_{part}

N_{part} scaling?

Geometry (thickness, area) of central Cu+Cu similar to peripheral Au+Au Cannot disentangle density vs path length

Background jets

Raw jet spectrum

Low p_T : 'combinatorial jets'

- Can be suppressed by requiring leading track
- However: no strict distinction at low p_T possible

Next step: Correct for background fluctuations and detector effects by unfolding/deconvolution

Removing the combinatorial jets

Raw jet spectrum

Fully corrected jet spectrum

Correct spectrum and remove combinatorial jets by unfolding

Results agree with biased jets: reliably recovers all jets and removed bkg

Jet broadening: R dependence of RAA

Jet R_{AA} increases with R (but slowly)

Jet fragment distributions

PbPb measurement

Jet broadening: transverse fragment distributions

Jet broadening: R dependence

Larger jet cone: 'catch' more radiation → Jet broadening

Ratio of spectra with different R

However, R = 0.5 still has $R_{AA} < 1$ – Hard to see/measure the radiated energy

Initial state effects: nPDFs nPDF results shown as ratio to proton

(large uncertainty)

Effects of shadowing/anti-shadowing

R_{dAu} > 1 at intermediate p_T could be anti-shadowing; shadowing at higher p_T Photons: largest effect: isospin Shadowing (EKS98) has only small impact at mid-rap, higher p_T

p+Pb centrality continued

Nuclear modification with three different centrality measures

Clear self-bias (measured range is selected range)

Strength of effect depends on classifier

Peripheral is suppressed: Suggests problem with centrality selection/N_{coll} calculation No clean experimental handle (yet) on geometry