SuperBIND: A Detector For a Sterile Neutrino Search

Ryan Bayes

Experimental Particle Physics University of Glasgow

27 March, 2013 νSTORM Workshop

- 3 Software for Simulation and Reconstruction
- 4 Multi-variate Analysis Implementation
- 5 Sensitivity and Systematics

Sterile Neutrinos from Experiment

- LSND evidence from $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}.$
- MiniBooNE reports^a:
 - 2.8 $\sigma \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ excess.
 - 3.4 $\sigma \ \nu_{\mu} \rightarrow \nu_{e}$ excess.

^aarxiv:1303.2588v2[hep-ph]

• Evidence in appearance but not disappearance data

LSND

scintillation sphere of positron

scintillation of 2.2 MeV y

Cerenkov-Cone of positron

1220 PMT (8-inch)

167 t diluted scintillator

3 / 15

MiniBooNE

ONE Detecto

The SuperBIND Detector

- Detector optimized for charge selection of muons.
- Allowances made for detection of ν_e and NC events.

Detector Description

- 1.5 cm thick Steel Plates, 6 m in diameter.
- Scintillating planes yield space points with $1 \times 1 \text{ cm}^2$ Sci. bars.
- 0.5 cm Air gap for each module.
- 16 m total detector length; 1.4 kTons in mass.
- Readout with SiPM coupled to WS fibres at both ends.
- Magnetic field induced by 270 kA carried by SCTL

The Definition of the Magnetic Field

- Finite element simulation of magnetic field in 5 m diameter steel plane simulated.
- Fit to azimuthal component with radius used in simulation and reconstruction.
- Assume the the radial behaviour is consistent for 6 m diameter plate.

Simulation of Far Detector Experiment

GENIE Simulation

- Provides neutrino events.
- Run in "geometry blind" mode.

GEANT4 Simulation

- Customizable geometry implemented
- Simulates material interactions of neutrino interaction products with detector.
- QGSP_BERT library used to specify hadron interactions.

Digitization of Simulation

- Simple digitization implemented.
- Clusters ionization positions into $1 \times 1 \text{ cm}^2$ voxels.
- Attenuates energy deposition over WS Fibre length.

Reconstruction of Simulation

• Relied on RecPack for Kalman implementation.

Pattern Recognition

- Longest set of single hits assigned to track
- Kalman filter applied track (number of hits used to seed momentum).
- Process is repeated on remaining hits until less than 5 hits left.

Track Fitting

- Tracks fit using Kalman Fitter
- Fitter seeded using the momentum from the track range.
- All tracks are fit (with varying degrees of success).

Cuts based implementation

- Used a cuts based analysis for LOI^a
- Isolated signal from background based on
 - number of hits in track.
 - error in track curvature.

• Energy threshold a function $\rho f p_z$.

^aarxiv:1206.0294v1[hep-ph] ^bAppearance and Evidence contours from Kopp et. al., arxiv:1303.3011[hep-ph]

Ryan Bayes (University of Glasgow)

Adoption of TMVA

- Use multiple variables for signal discrimination.
- Properly accounts for correlations.
- Reduces multiple variables into one classifier variable.

Event Variables used in Analysis

- Five variables selected show limited correlations
- \bullet Variables chosen which provide separation between ν_{μ} CC and $\bar{\nu}_{\mu}$ NC events

- **(())) (())) ())**

Application of the Analysis to Simulation

- Integrated efficiency better
- Better detection threshold
- Lower maximum efficiency

- Efficiency for all backgrounds order 10⁻⁵
- Exceeds experimental requirements.

Sensitivity of Experiment to Sterile Neutrinos

- Decision trees outperform LOI analysis.
- Other analysis methods (i.e. KNN and neural nets) still make strong statements about existing evidence (not at 10σ).

- Sample of spectrum after BDT analysis.
- Extremely high purity.

MVA Cuts 1.5 cm 80:4 NA 2 cm 113:10 61:6

Response to Systematics

- Systematics expected to include:
 - Number of neutrinos at detector (i.e. flux)
 - ν_μ/ν
 ν_μ/ν
 X-sec ratio (background only).
 - Relative magnitude of QES cross sections
- All affect the number of neutrinos detected
- $\bullet\,$ Total systematic is expected $\approx 1\%({\rm signal})$ and $\approx 10\%$ (background)
- Increasing both systematics by factor of 5 does not change the conclusion.

Cosmic Ray Simulation in SuperBIND

- Used the CRY generator in the mindG4 simulation.
- Applied fiducial cuts
 - 30 cm radial skin depth veto.
 - 50 cm endcap veto.
- upstream end cap shows that external event self veto is feasible.
 - Majority of cosmic rays that pass cuts are travelling backwards.
 - Timing information is needed.

- Cosmic rays generated on five surfaces containing 6 m long SuperBIND.
- Each simulation subjected to BDT analysis to extract efficiency per event.
- Assume
 - Horizontal surface flux: $2.7 \mu/s/m^2$
 - Vertical surface flux: $0.7 \mu/s/m^2$
 - Machine duty factor: 10⁻⁴

Expected rates of cosmic rays

Surface	W/O Fid. Cut	W. Fid. Cut
top	166	35
right	9	3
left	9	3
upstream	34	0
downstream	40	35
Total	260	76

14 / 15

Ryan Bayes (University of Glasgow) SuperBIND: A Detector For a Sterile Neutrin CERN vSTORM Workshop

Conclusions

- SuperBIND has received a small update
 - Change to geometry baseline (plate radius, Fe thickness, length)
 - Changed analysis to a multivariate analysis.
- Sensitivity to sterile neutrinos is still greater than 10σ in region allowed by LSND et al.
 - Boosted decision tree analysis improves on LOI result.
 - Results are robust to systematic uncertainties.
- An estimate of effects of cosmic rays have been investigated.
 - Contamination of the same order as the signal size.
 - Indications are that a time based veto will remove remaining contamination.
- There are things yet to be done:
 - Proper consideration of disappearance analysis: i.e. Near-Far extrapolation.
 - Is ν_e reconstruction viable in SuperBIND?