Cross-section Detectors @ a ν STORM Facility

Ian Taylor

March 27th, 2013

Introduction

- Restating the problem.
- *v*STORM cross-sections: detector or facility?
- List of targets.
- Potential detector technologies.
- Evaluation in the software framework.

The Problem

- Stealing liberally from Steve Boyd's talk:
 - A better understanding of cross-sections, especially σ_{νe} will have a massive effect on long baseline oscillation experiments.
 - Not even ν_{μ} CCQE is actually that well understood.
 - The rest are worse.
- What is the solution?
 - Detectors capable of excellent PID and imaging of the interaction vertex.
 - Multiple target measurements.
 - * C, O, Ar
 - ★ Al, Fe, Cu, Pb
 - ★ H or D
 - A damn good beam!

Measurement Style

- Be clear on what is being measured:
 - ▶ $1\mu + 1p$
 - $1\mu + 1p + 0\pi$
 - ▶ $1\mu + ?p+0\pi$
 - 1μ + nothing visible.
- Where there is uncertainty, document the uncertainty; provide information on detection rates, e.g. energy threshold for protons.
- Measure useful parameters: particle energy, direction, multiplicity, neutrino energy, target nucleus.

Example from a past life: T2K's π^0 Detector

- Should soon publish a cross-section result called something like:
 - "Neutral Current π^0 Production on a H₂O Target".
- For the same result, I would want us to provide details on:
 - The energy and angle of the reconstructed π^0 particle.
 - The purity of the selected sample; μ or π[±] at 90° to the ν beam are very hard to detect given the P0D's design.
 - The uncertainty on the H₂O target; they use a subtraction method from a detector with C, Cu & Pb.
 - (I have no reason to believe T2K won't fulfill these requirements!)

Detector vs Facility

- We can't reasonably expect one detector to make all of the measurements we would like.
 - Even ignoring the desire for multiple targets, we would have issues with:
 - Containment vs energy resolution. (Size, density, detector technology).
 - Good understanding of vertex activity vs inactive target material.
 - ► CCQE vs NC π^0 . e.g. Gas TPC, great for $e^{\pm}/\mu^{\pm}/\pi^{\pm}$ ID and energy resolution, poor for π^0 detection.
- We probably all agree we should aim to offer a facility.

What is a Facility?

- A big hall with a ν beam going through it?
- A communal Muon Range Detector downstream of detector space?
- A generic magnet; large enough to provide a magnetized target region?
 - Aside: How useful is a magnet for cross-section measurement?
 - Gives you momentum and charge determination.
 - Helps with some μ/π separation, depending on charge.
- Software tools, control systems, a vetting process to guarantee complementary detectors?

Detector Considerations

- Should be targeted; don't compromise the primary measurement unnecessarily in an attempt at secondary measurements.
- Might not run for the whole run period.
 - Systematic errors vs statistical limits.
- Target material should match the global goals.
- But we probably don't get to decide all of this as a facility.

Potential Detectors

- Ar TPC
 - Event rate / pile up needs to be studied (gas vs liquid), but good fiducial cuts possible.
 - Clean event reconstruction.
- LBNE Near Detector, HIRESMNU
 - Straw-tube tracker, (S. Mishra & R. Petti).
 - Builds on experience to date; good vtx activity detection.
 - ► Foil layers for some nuclear targets.
- LBNO / LAGUNE Near Detector
 - Mentioned by A. Blondel in phone meeting.
 - Installed @ ν STORM prior to service in LBNO.
 - ► GAr TPC, with fully active calorimeter. Potential of H₂ target.
- Either would save money, while providing useful commissioning of detector before LBN(E/O) start.

Bubble Chamber 2017?

- Used to be a very favourable detector technology:
 - Low cost detector medium
 - Clear event readout, with 'easy' reconstruction.
- Major issue was timing; couldn't keep up with modern experiments.
- 'Rapid Cycling' bubble chambers from 70's & 80's had a rate of 30 Hz for the piston; i.e. one pump per beam pulse.
- CCD cameras could provide readout (200 ps time-scale with a 'gated intensified CCD'), with repeated shots during beam pulse allowing identification of first interaction.
- Would need to investigate event rates.

Software Framework for Detector Evaluation

- Very much a work in progress!
 - By myself, Ed Santos, Steve Boyd and Ken Long.
- Goal is to evaluate the potential physics reach of combinations of detectors.
- Relies on GENIE, GEANT4 and a fake reconstruction.
 - Track / shower reconstruction is completely fake.
 - Charge ID is real.
 - PID is fake, work in progress.
- Attempt to answer some of the questions raised earlier.

Confusion Matrix

Confusion Matrix: fullrange

Figure: Confusion matrix for a selection of $\overline{\nu}_{\mu}$ and ν_{e} events, in an Ar TPC with a 0.4 T field.

Ian Taylor (University of Warwick)

νSTORM 2013 @ CERN

Detection and Charge for Protons

Figure: Detection efficiency (left) and charge identification (right) for primary protons from 10,000 $\overline{\nu}_{\mu}$ and 10,000 ν_{e} events.

Summary

- There are plenty of ideas for a suite of cross-section detectors.
- There are plenty of goals too.
- The tools to evaluate detector designs are at an early stage, but progressing.
- We probably need to tighten up the 'facility' concept.