

vSTORM Beam Instrumentation First ideas

Lars Søby on behalf of the CERN Beam Instrumentation Group

Overview

- Specifications and beam parameters
- Beam observables:
 - Intensity
 - Beam position
 - Beam profile
 - Tune
 - Beam loss
 - Energy
- Summery

Beam parameters

Parameter	Value	Comments	
Muon energy	3.8GeV		
Total intensity	1 - 5E11 <mark>?</mark>	Muon	
Pulse length	10.5µs	From SPS	
Bunch frequency	200MHz	Before injection	
Nb of bunches	233-2100 <mark>?</mark>	Phase at injection?	
Bunch length	1-4ns?	Has to be simulated	
Bunch intensity	5E7-2E9 <mark>?</mark>	More precise data needed	
Rev. frequency	851kHz	T = 1.17μs	
Bunch current	2-80mA ?	Injection scheme?	
Average current	14-68mA	At injection	
Circumference	350m		
Beam size	30cm	Diameter	
Aperture	40-60cm		
Beam life time	100 turns		
Vacuum	10E-7		

- 1. Continuous multi turn (~9 turns) injection.
- 2. No RF
- 3. Injecting on top of circulation bunches NOT foreseen yet, i.e. 200MHz plus any frequency above is possible.
- 4. Structure in beam unknown for the moment

What is asked for

More complete specifications are needed ©

	Resolution	Accuracy	Quantity	Comments
Intensity	0.1%	1%	1	
Beam position	1cm	?	?	
Beam profile	1cm	?	~15	Destructive is OK?
Tune	?	?	1	
Beam loss	?	?	?	Ring tuning
Energy	?	1%	1	
Energy spread	?	?	1	

- Turn by turn measurements are requested
- 1us time resolution? or synchronized to revolution frequency?

Intensity measurements

L4 Beam Current Transformer

Parameter				
Time constant	> 100ms			
Bandwidth	10MHz 0.5%			
Droop @ 500us				
Resolution	~10µA			
Rise time	35ns			
Cost	75kCHF			

LEIR Semi-fast BCT [100us/div]

Lars Søby

nuSTORM 26-03-2013

Beam position measurements

Button Pick-ups

- Simple design 🙂
- Cheapest solution 🙂
- Big buttons needed ⊗

LHC buttons D=25mm

Single turn resolution ~10mm with S/N=10 Cost ~10-15kCHF...depending on quantity

Beam position measurements

Inductive BPM

- Sensitive ⁽²⁾, captures all image current
- Less sensitive to beam loss ⁽²⁾
- Intensity measurement 🙂
- Big ceramics, costly 😕

Ceramic chamber

Single turn resolution ~1.5mm with S/N=10 Cost ~35kCHF...depending on quantity

Lars Søby

nuSTORM 26-03-2013

Profile measurements

- Only non destructive device is the Ionization Profile Monitor (IPM) but not enough
- <u>time / intensity</u> to ionize gas and obtain a profile.
- Other detectors based on ionization (MWPC, IC, GEM) are destructive (and complicated)
- No synchrotron light
- Wire scanners too slow
- SEM <u>strips</u> and Scintillation screens are options

A LARGE FIXED SCINTILLATING SCREEN FOR THE LHC DUMP LINE

Lars Søby nuSTORM 26-03-2013

Profile measurements

Power full in/out mechanism needed!

FRI

Lars Søby nuSTORM 26-03-2013

Tune measurements

- Will use existing BPM(s)
- Based on known BBQ technique
- <u>Required resolution?</u>: Determines number of PU's needed.
- Excitation probably not needed (injection coherent oscillations)

Cost ~10kCHF

Lars Søby nuSTORM 26-03-2013

Ionization Chamber and Secondary Emission Monitor

Ionization Chamber

- Stainless steal cylinder
- Parallel electrodes distance 0.5 cm
- Diameter 8.9 cm
- Voltage 1.5 kV
- Low pass filter at the HV input

IC: Total losses at aperture restrictions

- Al electrodes
- Length 60 cm
- Ion collection time <u>85 us</u>
- N₂ gas filling at 1.1 bar
- Sensitive volume 1.5 l
- Sensitivity 54 uC/Gy
- Dynamic range 9 orders of magnitude

Secondary Emission monitor

CVD: Fast losses at injection

- Poly or Single Crystal chemical Vapor Deposition diamonds
- Signal amplitude comparable to 1.5 litre ionisation chamber
- Radiation tolerant amplifier near to detector
- Response time below 1 ns

Sensitive to charges particles: Electrons, muons, pions... Cost ~5-8kCHF

Energy and polarization measurements

Energy:

Magnetic spectrometers measure the <u>particle momentum</u> by precisely determining the angle of deflection in a dipole magnet. $\theta \propto \frac{1}{r} \int B ds$

Use Scintillating screens / SEM-grids in arcs combined with collimator (well known position), well known magnet fields (spectrometer magnet) and beam optics:

$$\sigma = \sqrt{\epsilon \beta + (\frac{\Delta p}{p} * D)}$$

Polarization measurement:

The precession of the spin associated with each muon in a magnetic field is governed by the Thomas-BMT equation. At every turn this precession is given by the spin tune which is a function of the muon energy.

No experience in the CERN BE/BI group.

MUON POLARIMETER IN A NEUTRINO FACTORY DECAY RING

M. Apollonio *, Imperial College, London, UK, D. J. Kelliher, ASTeC, STFC Rutherford Appleton Laboratory, UK A. Blondel, DPNC, Universite de Gene`ve, CH WEPE053, Proceedings of IPAC'10, Kyoto, Japan

BI proposals

	Instrument	Unit cost	Quantity	Comments
Intensity	BCT	75kCHF	1	
Beam position	Button BPM	15kCHF	?	10cm diameter
Beam profile	Scintillating screen / SEM-grids	50kCHF	~15	Destructive
Tune	BBQ	10kCHF	1	
Beam loss	Ionization chamber + Diamonds	5-8kCHF		Ring tuning
Energy	Polarimeter	?	1	
Energy spread	Scintillating screen / SEM	50kCHF	?	In arcs

Summery

- More precise specifications are needed to refine instrument choices.
- Structured beam is a plus for BI, and knowledge about bunch lengths, injection scheme and intensities is needed.
- Turn clock timing signal, for synchronized measurements ?
- Big is expensive: Ceramics, screens, in-out...