The ATLAS Beam Condition Monitor Commissioning

Andrej Gorišek
J. Stefan Institute, Ljubljana, Slovenia

TWEPP
Naxos, Greece
15-19 September 2008
The ATLAS BCM collaboration

- JSI, Ljubljana
 - V. Cindro, I. Dolenc, A. Gorišek, G. Kramberger, B. Maček, I. Mandić, E. Margan, M. Zavrtanik, M. Mikuž

- CERN
 - B. Demirkoz, D. Dobos, J. Hartert, H. Pernegger, P. Weilhammer

- Univ. of Applied Science, Wiener Neustadt
 - E. Griesmayer, H. Frais-Kölbl, M. Niegl

- OSU, Columbus
 - H. Kagan, S. Smith

- Univ. Toronto
 - M. Cadabeschi, D. Tardif, W. Trischuk

All you ever wanted to know about BCM:
https://twiki.cern.ch/twiki/bin/view/Atlas/BcmWiki
The ATLAS Spectrometer

A Toroidal Lhc Apparatus

The Inner Detector (ID):
- closest to the interaction
- efficient tracking of charged particles in a homogeneous axial magnetic field of 2 T
- vertex reconstruction
- electron identification capabilities in Transition Radiation Tracker (TRT)
- consists of: Pixel Detector, SemiConductor Tracker (SCT) and TRT

Calorimeter system:
- stop and measure energy of particles and distinguish between photons, electrons and hadronic jets
- consists of: an electromagnetic (EM) calorimeter in the inner part, hadronic barrel calorimeter (Tile Calorimeter), hadronic end cap (HEC) and forward calorimeters (FCAL).

Muon Spectrometer:
- independent tracking and momentum measurement of muons over large area
- high p_T muon trigger
- strong toroidal magnetic field of up to 4 T, generated by super-conducting air-core toroids,

Andrej Gorišek, JSI Ljubljana
ATLAS Inner Detector

Pixel Detector

Semiconductor Tracker

BCM modules

Transition Radiation Tracker

Andrej Gorišek, JSI Ljubljana
Beam Accidents - Protection

- ATLAS is furthest from injection – safest (?)

- Passive protection:
 - ATLAS and CMS have Target Absorber Secondaries (TAS) collimators @ z=±18m: protecting inner triplet of quadrupols from secondaries produced in p-p collisions and Inner Detector from beam failures

- Active protection:
 - Beam Interlock System (BIS): two redundant optical loops transporting BeamPermit signals – a logical AND of UserPermit signals provided by user systems (machine beam loss or beam position monitors, experiment BCMs, etc.)
 - Beam Condition Monitors (BCMs): contribute UserPermit signals to the BIS
 - If UserPermit is set to False optical loop is interrupted BeamPermit removed, beam dump procedure initiated (beam is dumped within 3 turns ~270 μs) + no injection from SPS
Beam Accidents

- Most likely due to wrong magnet settings:
 ~8000 magnets powered by ~1700 different electronic circuits

- Single turn losses
 - @ injection from SPS
 - 450GeV + pilot bunch only (5 \times 10^9 protons) – no danger to detectors
 - BCM will diagnose the loses and eventually prevent further false injections

- Multi-turn losses
 - RF, magnet or collimator failure
 - TAS limits the damage to the innermost spectrometer
 - different time scales ranging from few turns (100’s of µs) to seconds
 - the most rapid due to warm dipole magnet (D1) failure closest to ATLAS interaction point \(\tau = \sim 5 \text{ turns} \)
 - BCM has \(\sim 2 \text{ turns} \) (~150 µs) to act
Simulation + past experience

Simulations of beam orbits with wrong magnet settings (D. Bocian) exhibit scenarios with beam scrapping TAS collimators.

LHC will circulate 2808 bunches per colliding beam, each bunch consisting of 1.1×10^{11} protons at energy of 7 TeV – about 200-times more energy stored in beams compared to maximum value in previous accelerators like HERA or Tevatron.

20-30 Tevatron turns (misfiring of kicker magnet)

Andrej Gorišek, JSI Ljubljana
BCM background vs. Interaction Events

Measurement every proton bunch crossing (every 25ns)
Distinguish between interactions and background (scraping of collimators, beam gas,...)
→ requirement: better than 12.5 ns width+baseline restoration

2 detector stations, symmetric in z

- TAS (collimator) event: $\Delta t = 2z/c = 12.5$ns (ideally)
- Interaction: $\Delta t = 0, 25, \ldots$ ns
Detector module

- pCVD diamond sensors (10x10 mm2, contact 8x8mm2, 500μm thick)
 - Shown to withstand $> 10^{15}$ p/cm2
 - Fast & short signal (FWHM~2ns, rise time<1ns)
 - Large charge carrier drift velocity (107 cm/s) (operates with high drift field - 2 V/μm)
 - Short charge lifetime (trapping)
 - Very Low leakage current after irradiation
 - Does not require detector cooling

TWEPP, Naxos, Greece
September 15 – 19, 2007

Andrej Gorišek, JSI Ljubljana
Detector module assembly

- increase modularity of BCM detector modules

alignment of diamond sensors in BCM detector module
(at 45° = along beam direction)
BCM installed on Pixel detector
The 8 installed modules

<table>
<thead>
<tr>
<th>MODULE</th>
<th>410</th>
<th>413</th>
<th>420</th>
<th>422</th>
<th>404</th>
<th>405</th>
<th>408</th>
<th>424</th>
</tr>
</thead>
<tbody>
<tr>
<td>preferred polarity</td>
<td>+1000V</td>
<td>+1000V</td>
<td>-1000V</td>
<td>-1000V</td>
<td>+1000V</td>
<td>+1000V</td>
<td>-1000V</td>
<td>-1000V</td>
</tr>
<tr>
<td>MPV [mV]</td>
<td>2.77</td>
<td>2.15</td>
<td>2.67</td>
<td>2.40</td>
<td>2.43</td>
<td>2.30</td>
<td>2.21</td>
<td>2.70</td>
</tr>
<tr>
<td>SNR</td>
<td>7.8</td>
<td>7.0</td>
<td>7.8</td>
<td>7.3</td>
<td>6.5</td>
<td>7.0</td>
<td>7.0</td>
<td>8.2</td>
</tr>
</tbody>
</table>
BCM readout chain

- analogue signals from BCM detector modules routed to region behind calorimeter (lower radiation levels – 10Gy in 10 years) where they are digitized by custom board based on NINO chip
- signals from separate BCM detector modules are connected to separate NINO boards for electrical ground separation – minimize interference (grounds connected together close to detector modules)
- optical signals are taken to electronics room (USA15) for processing by Vitrex-4 based FPGA board
NINO board

- amplifier-discriminator-TOT chip
- developed for ALICE RPC ToF (CERN-MIC – F. Anghinolfi et al.)
- radiation tolerant; IBM 0.25µm technology
- LVDS output signal with rise time <1ns & jitter <25ps
- 8 differential inputs (2 used on each board)
- output signal width correlated to the input charge (min. detection threshold 10fC)
- each BCM module connected to two NINO inputs in 1:11 ratio to increase NINO dynamic range
- resulting two TOT digital signals from the NINO chip are further converted into optical signal with radiation tolerant laser diodes (Mitsubishi FU-427SLD-FV1).
OPTO link board

- 70m optical fibres from NINO boards (single mode fibers equipped with E2000 APC connectors)
- **receives** 8 optical signals from 4 NINO boards (photo diode – Lightron LP3A4-SNC1)
- PECL output to FPGA
- NIM level monitor output
ML410 development board based on Virtex-4
- 8 RocketIO serial input/output channels sampling the received signals with frequency of 2.56 GHz
- real-time signal processing: signal arrival time, pulse width calculation
- RAM (circular buffer) stores 3×10^6 last LHC bunch crossings (for “post mortem”)
- additional analysis:
 - in-time and out-off time hits
 - rates and trends of rates of each module
 - coincidences for different combination of modules
- Use 2 boards and have them communicate
 - channels arranged in redundant fashion (vertical modules to one and horizontal modules to another FPGA board for high gain channels and the opposite for low gain channels)
FPGA outputs

◆ LHC Beam Abort:
In case of beam failures, two redundant signals, indicating that beam conditions in the ATLAS Inner detector have reached the unacceptable levels, will be sent to the BIS resulting in beam abort.

◆ ATLAS Detector Safety System (DSS)
This hardware interlock system guards the experimental equipment and acts to prevent damages from any detected faulty situation. The BCM system has 4 electrical connection to DSS in order to send warnings or alarm signals.

◆ ATLAS Detector Control System (DCS)
• a PC, integrated into the ATLAS DCS system
• monitor the temperature of detector modules and NINO electronics boards
• control the high and low voltages
• more sophisticated information (average rates, histograms, etc.), obtained from processed signals, available to ATLAS and LHC control through DCS PC connected via Ethernet to FPGA.
• In case of a beam abort, all recent information from BCM, currently stored in ring buffer of FPGA, is transfered through DCS for post mortem analysis.

◆ ATLAS Data Acquisition (DAQ)
• FPGA also acts as a ROD. L1A signal will cause FPGA to send data to the ATLAS DAQ system through standard optical S-link.

◆ ATLAS LVL1 trigger
• information to the ATLAS LVL1 trigger in a form of 9 (temporarily 6) bits for topologically interesting events
BCM QA

- QA of all modules through production cycle
- Raw sensor characterization / ceramic module
- I/V, CCD
- Module performance
- Noise
- Signal from ⁹⁰Sr
- Thermal cycling:
 10 cycles from -25°C to 45°C
- Infant mortality – 12h @ 80°C
- Resulting S/N from 6.5 to 8.2 for perpendicular incidence
SPS beam test setup

4 tracking modules – Si-strip
(4 XY point along particle trajectory)

180GeV/c π beam

BCM modules

trigger scintillators

Andrej Gorišek, JSI Ljubljana
The ATLAS Beam Condition Monitor Commissioning
Analog signals – surface uniformity

- all modules tested in beam-test setup:
 - signal & noise performance
 - surface uniformity

size of diamond sensor (tilted 45°)
signal uniform over surface
Efficiency and noise rate

- SNR after NINO digitization ~7.2
- contribution of NINO (no input) to σ ~29mV compatible with decrease in SNR (compatible with SNR before NINO normalized to 45° ~10)

![Graph showing efficiency and noise rate](image-url)
Efficiency vs. noise occupancy

NINO digital circuit features amplifier discriminator and TOT measurement

- by changing the discriminator threshold efficiency and noise rate (occupancy) changes
- noise occupancy is scaled noise rate to 25 ns interval
- efficiency of system up to digital circuit (NINO) triggering on an incident MIP (in scintillators)

![Graph showing efficiency vs. noise occupancy](image)

- Efficiency @ noise occup.
 - 99.5% @ 10^{-6}
 - 99% @ 2×10^{-8}
 - 97.5% @ 2×10^{-9}
 - 95% @ 5×10^{-12}

TWEPP, Naxos, Greece
September 15 – 19, 2007
The ATLAS Beam Condition Monitor Commissioning
Andrej Gorišek, JSI Ljubljana
Timing resolution

Time difference between two detectors:
- RMS~500 ps per detector (end of read out chain)
- practically all events inside [-2ns,2ns]
Noise performance of installed modules

Gaussian noise observed on all channels
All modules in range between 50mV and 70mV

<table>
<thead>
<tr>
<th>Module</th>
<th>Position [Side, (x,y)]</th>
<th>Noise σ [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F410</td>
<td>A, (+x,0)</td>
<td>68.0</td>
</tr>
<tr>
<td>F405</td>
<td>A, (0,+y)</td>
<td>62.6</td>
</tr>
<tr>
<td>F413</td>
<td>A, (-x,0)</td>
<td>60.3</td>
</tr>
<tr>
<td>F404</td>
<td>A, (0,-y)</td>
<td>53.9</td>
</tr>
<tr>
<td>F424</td>
<td>C, (+x,0)</td>
<td>61.0</td>
</tr>
<tr>
<td>F420</td>
<td>C, (0,+y)</td>
<td>56.7</td>
</tr>
<tr>
<td>F422</td>
<td>C, (-x,0)</td>
<td>51.0</td>
</tr>
<tr>
<td>F408</td>
<td>C, (0,-y)</td>
<td>51.3</td>
</tr>
</tbody>
</table>
2 10^9 protons in one beam on colimator
Summary

- The ATLAS BCM was constructed using radiation hard pCVD diamonds
 - back to back "double decker" configuration at 45° towards the beam
- Test beam and on-the-bench result indicate operable system
 - S/N, risetime, pulse-width,... meet the design criteria
 - efficiency/noise occupancy reasonable
- ATLAS BCM status (commissioned!):
 - FE installed in January 2007
 - NINO TOT electronics installed in spring 2008 – noise performance adequate
 - FPGA Xilinx Vitrex-4 based back-end – running in common ATLAS framework