

Development of a 3.2 Gpixel Camera for the Large Synoptic Survey Telescope (LSST)

John Oliver
LSST Camera Electronics Project Manager
For the LSST Camera Electronics Team
15-Sept-2008

Overview

- Major science drivers
- Critical specifications
- Telescope
- Camera
 - > Sensors
 - > Readout electronics

Major Science Drivers

- "Synoptic survey": Comprehensive & multipurpose
- Survey entire visible sky (20,000 deg²) in five filter bands (400 nm 1,000 nm) every 3 nights
- ◆ Dark matter survey → Weak gravitational lensing
- \blacksquare Dark energy probe \rightarrow Type 1a supernovae discovery > 10^3 /night
- Galactic structure
- Near Earth Objects & Potentially Hazardous Asteroids
- Transient phenomena

Dark Matter Survey

- Weak lensing-

Apparent rotation of elipticities of faint galaxies

→ Cosmic Shear

T. Tyson

Dark Matter Survey

- Weak lensing -

Strongly lensed galaxy

- Weak lensing Measurements of elipticity
correlations of large
numbers of faint galaxies
→ "cosmic shear"

Tomographic reconstruction of dark matter density from shear data

T. Tyson

 $\underline{http://www.nsf.gov/od/lpa/news/press/00/pr0029.htm}$

Dark Energy Measurement

- Type 1A Supernovae -

- High statistics measurements of Type 1A SN \rightarrow > 10³ per observing night
- Redshift & distance measurement
 - Fixed luminosity (standard candle) → distance
 - *Photometric* redshift measurements in five filter bands to Z = 1.2

- Transient phenomena -

Differential images of SN 1987A

A. Becker, U. Washington (SDSS)

Critical Specifications - Telescope -

• Survey telescope figure of merit "Etendue" {(Dia)² x (FoV solid angle) }

- Large aperture ~ 8.4 m, (6.7 m equivalent clear aperture)
- Large FoV ~ 3.5 deg
- Large focal plane ~ 64 cm diameter
- LSST Etendue $\sim 320 \text{ (deg}^2)\text{(m}^2)$
- High "throughput"

Optics

[*] Corrects gravitational sag due to mirror inclination

Spin casting at the Steward Mirror Lab U. Arizona

Lid is lifted from the primary/tertiary mirror blank 23-July-08 Made possible by grant from Bill Gates, Charles Simonyi – Microsoft Corp.

Critical Specifications - Camera & Sensors-

- Image sensors
 - ➤ Large focal plane → ~ 64 cm dia
 - \triangleright ~ 200x 16-Mpixel CCD image sensors, 10µ pixels (0.2") → 3.2 Gpixels
 - ➤ Back side illuminated
 - > Small "Point spread function" PSF (minimum spot size) $< 7.5 \mu (10 \mu \text{ max})$
 - \triangleright Low f-number = 1.2 \rightarrow must be flat to 10 μ (peak-valley) across focal plane
 - ➤ High quantum efficiency 400 nm 1,000 nm (40%, 80%, 40%)
 - \triangleright Low leakage $< \sim 1$ e/s per pixel \rightarrow T ~ -100 C
 - ➤ High "full well" capacity ~ 100,000 e/pixel
- Back-to-back 15 second exposures on each piece of sky →Cosmic ray rejection
- 2 second readout \rightarrow low dead time, high throughput
- Sky shot noise limited images → CCD read noise ~ 5 e rms
- Focal plane contained in a *contamination free* evacuated cryostat to prevent fogging of sensor surfaces

Note: Last three requirements highly constrain the readout topology

Critical Specifications - Implications for readout & sensors -

Typical sensitivity $S = 5 \mu V/e$ $\rightarrow Cg \sim 32 \text{ ff}$

Dominant noise source → "kTC noise"

$$\sigma_{kTC} = \sqrt{k \cdot T \cdot C_g} \rightarrow \sqrt{\frac{V_T}{S}} \approx 50e \ (cold)$$

kTC noise easily removed by

- Correlated Double Sampling (Clamp & Sample)
- Dual Slope Integration (optimal)

CCD output "amplifier"

CCD output

Dual Slope Integration sequence

- a) Reset
- b) Integrate baseline up
- c) Move charge to output fet
- d) Integrate signal down

$$\sigma = \frac{e_n}{S} \cdot \frac{1}{\sqrt{T_{\text{int}}}}$$

For typical "science grade" CCD

$$e_n \approx 10 \text{ to } 20 \frac{nV}{\sqrt{Hz}}$$

Read noise vs Integration time

Integration time (s)

$$\rightarrow$$
 T_{read} > ~ 2 μ s/pixel

Critical Specifications

- Implications for Sensors -

• At $f_{pixel-read} = 500 \text{ kpixels/sec} \rightarrow 32 \text{ sec Read Time (with one output amplifier)}$

→ Each CCD must have 16 parallel outputs & electronic readout channels

 \rightarrow ~200 sensors \rightarrow 3,200 parallel readout channels

- 16x segments, gap-less
- $\frac{1}{2}$ k x 2k each
- ~ 40 mm x 40 mm

Critical Specifications - Implications for Sensor Thickness -

Conflicting requirements \rightarrow

- Small PSF
 - Blue light has very <u>small</u> absorption length
 - → favors *thin* sensor to minimize diffusion
 - → favors <u>full depletion</u> in <u>high resistivity silicon</u>
- High QE in red
 - Red light has very *long* absorption length
 - *Thin* sensor would be transparent in red & near IR → favors thick sensor
- Optimization: "Study of Silicon Sensor Thickness Optimization for LSST" [1]
 - Calculations
 - Simulations

[1] http://www.inst.bnl.gov/~poc/LSST/Study%20of%20sensor%20thickness.doc

LSST Sensor Working Group D. Figer, J. Geary, K. Gilmore, S. Marshall, P. O'Connor, J. Oliver, V. Radeka, C. Stubbs, P. Takacs, T. Tyson

Effect of sensor thickness on PSF

Beam divergence : f1.2 beam →46 deg max

Beam divergence in red, (simulation)

PSF vs Thickness : Divergence + diffusion \rightarrow Sets thickness limit $t \le 100 \mu$

Effect of sensor thickness on QE

Silicon QE @ 1000 nm vs Thickness

To get > 25% QE @ - 100C → $t \ge 100\mu$

Optimal sensor thickness = 100μ

Sensor Requirements cont'

- Temperature Stability -
- Sensor QE is very temperature dependent near ~ 1,000 nm
- For accurate photometry, temperature stability ~ +/- 0.1C
- Sources of heat
 - CCD gates (*small*)
 - CCD output amplifiers (medium)
 - Heat radiation through lens (*large* ~ ½ W per sensor)
- Heat removal by thermal straps to a cryogenic plate
- Thermal control loop
 - High stability temp sensors close to CCD package
 - Heaters \rightarrow 0 to ~ $\frac{1}{4}$ W per sensor on sensor package or cold straps

Sensor Status

An array of "study" sensors has been produced by

- e2v
- STA/ITL
 - 100μ to 150μ thickness
 - All fully depleted between 10V 25V "back window bias"
 - Sizes 1 MPixels to 16 Mpixels
 - Multiple output ports
 - Tested @ BNL
 - Not final package

"Pre-Production" sensors

- E2v
- STA/ITL
- 100µ thickness
- Final packaging
 - \rightarrow 4 side buttable
 - \rightarrow flat to 6 μ (p-v)
- Expected → Fall 2010

Focal Plane Construction

- 3 x 3 arrays of CCDs are mounted into a precision "Raft"
- 144 Mpixels per Raft
- 21 Rafts are mounted onto a <u>rigid</u> (SiC) "Grid"
- Major issues
 - Each sensor has ~ 150 bond pads
 - Total of ~ 30,000 bond pads
 - Sensors reside in high-vacuum cryostat
 - To avoid 30,000 cryostat feedthroughs, all readout electronics is placed within cryostat.
 - Each Raft is modular. All its readout electronics must reside in the shadow of the Raft.
- Raft electronics is divided into two sections
 - Analog, front end, in cryo-zone (-100C)
 - ADC/digital in warmer zone (- 40C)

Camera Overview

Focal Plane Construction

9 Sensor Raft

- Trimmed for flatness requirement during assembly
- Very high image "fill factor" > ~ 90%

Raft Tower Assembly

21 "Science Rafts"
4 special purpose
"corner Rafts"

"Guide" sensors for telescope fine steering

Cryostat Assembly

Camera with filters

Front End Electronics

- Located within "grid": Operates at 100C to 120C
- Each "FEB" services 24 CCD segments 6 FEBs per Raft
- Analog functionality in 2 ASICs
 - Analog Signal Processing ASIC (ASPIC)
 - LPNHE/IN2P3 collaboration[1] France
 - Dual Slope Integrator : Programmable gain
 - Specs:
 - $e_n < \sim 5 \text{ nV/rt(Hz)}$
 - x-talk < ~ 10^{-3} (achieved in 1^{st} version)
 - Differential output to Back End Boards (ADCs) via shielded flex cable
 - 8 channel ASIC, AMS 0.35 μ CMOS @ 5V, ~ 25mW/ch

[1] V. Tocut, H. Lebbolo, C. De La Taille, P. Antilogus, S. Bailey, M. Moniez, F. Wicek, R. Sefri

Front End Electronics – cont

Sensor Control Chip (SCC)

- ORNL U. Tennessee [1]
- Receives LVDS signals from BEBs → Converts to Clock levels to CCDs
- Parallel gates (4), Serial gates(3), Reset(1)
- Clock Hi/Lo levels in range 0V to ~ 25V, programmable on BEB
- 4 channels per chip, 2 chips per CCD.
- CCD bias level buffers in range up to ~ 30V
- ATMEL BCD-SOI process. HV to 45V
- Status
 - > 1st submission tested & fully functional
 - ➤ Some pulse shape "wrinkles" (fully understood in simulation)
 - \geq 2nd submission \rightarrow Fall '08

Additional FEB functionality

- Temp sensing & other usual monitoring
- Raft heaters → Part of focal plane thermal control loop

Back End Electronics

Raft Control Crate

Back End Boards

- 6x Back End Boards (BEBs)
- 24 channels ea, 18 bit 1 MHz ADCs (COTS)
- Temp sensor processing
- Programmable bias & clock levels for FEBs
- Sensor heater control
- Misc slow controls
- FPGA (Xilinx) based programmable "Readout State Machine"
- Collects all ADC data @ 100 MHz
- All control loops stored locally
- Responds to high level commands from Timing & Control Module (TCM)
- All Rafts in fully synchronous operation
- "Rocket i/o" data output to drive data fiber to DAQ (~1.6 Gb/s)
- Power PC for non-time critical operations

Back End Electronics

- Data Volume -

• Per image: 3.2 Gpixels \rightarrow ~ 7 GB

• Per minute : 4 images → ~28 GB

• Per night : ~ 600 min → ~ 16 TB

• Per year : \rightarrow ~ 5 PB

• All fibers received by "Science Data System" – (SLAC)

• Public data set

Additional Electronics Issues

Thermal management

- Thermal paths & modeling
 - →ICs and components to ground/thermal planes
 - → "Chip scale" packaging
 - → Conduction bars
 - → Crates/housing
 - → Cold plates / cryoplates

Board level $R_t \sim 20C/W$ across 2 oz copper plane

Crate level $R_t < \sim 0.5 C/W$

Additional Electronics Issues

Contamination & outgassing

- Outgassing materials may condense on sensor surface
- ~ 2 m^2 of pcb materials in cryostat
- Polyimide pcb construction (if necessary)
- Parylene (vapor deposition) or similar coatings
- Electronics separated from focal plane by molecular barriers (tortuous paths) and separate vacuum pumping
- All in-cryostat materials tested / certified in test "Materials Test Facility" @ SLAC
- Optical loss measurement over LSST pass band & residual gas analyzer (RGA)

Telescope and site: Cerro Pachon, Chile

