

saclay

A Fast Architecture Providing Zero Suppressed Digital Output Integrated in a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector and the EUDET beam Telescope

- IRFU & IPHC group -

Outline

- Physics motivation of MAPS (Monolithic Active Pixel Sensors) R&D
- Achieved MAPS performances
- MAPS applications: the STAR vertex detector upgrade & the EUDET beam telescope
- High readout speed, low noise, low power dissipation, highly integrated signal processing architecture
- Conclusion

Christine HU-GUO (IPHC-Strasbourg)

N 2 P 3

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

MAPS: Physics Motivations

- Flavor tagging takes growing importance for understanding the dynamics underlying elementary process in HEP experiments
 - Study short lived particles through their decay vertex
- Vertexing & Tracking:
 - **Need excellent reconstruction of secondary vertices**
 - Granularity & low material budget
 - **Need precise measurement of the momenta of tracks**
 - Improve the system's accuracy by an order of magnitude w.r.t. the state of the art
- Existing pixel technologies are not adequate for this requirement level:
 - **CCD (SLD): granular and thin BUT too slow and not radiation hard**
 - Hybrid Pixel Sensors (Tevatron, LHC): fast and radiation hard BUT not granular and thin enough
- Aim for an ultra-light, very granular, radiation tolerant, fast and poly-layer vertex detector installed very close to the interaction point
 - **Demanding running conditions (occupancy, radiation) !!!**
- MAPS provide an attractive trade-off between granularity, material budget, readout speed, radiation tolerance and power dissipation

Main Features of MAPS

MAPS: with Analogue Readout

■ ENC ~ 10-15 e⁻, S/N (MPV) ~ 15-30

✤ Detection efficiency > 99.5%, even at operation temperature up to 40°C

Single point resolution: ~ 1-3 μm for pixel pitches of 10-40 μm

BUT: moderate readout speed for larger sensors with smaller pitch!

- For many applications: high granularity and fast readout required simultaneously
 - Integrating signal processing: ADC, Data sparsification, ...
- ➔ R&D on high readout speed, low noise, low power dissipation, highly integrated signal processing architecture with radiation tolerance

MAPS Applications

STAR Heavy Flavor Tracker (HFT) upgrade

- **Solution** Vertex detector: 2 cylindrical MAPS layers
 - at 2.5 and 7 cm from beam line
- Vertex development is a 3-step process:
 - 2007: MAPS telescope in STAR environment
 3 "MimoStar2" sensors with analogue output
 - 2009: 3 detector sectors, "Phase1" sensors
 - Digital output without zero suppression
 - \Box t_{int}= 640 µs, (30 µm pitch), ~2x2 cm²
 - 2010: whole detector, "Ultimate" sensors
 - Digital output with integrated zero suppression
 - $\hfill\square$ Faster (t_{int} ~ 200 µs) and more granular (18.4 µm pitch), ~2x2 cm^2

- Source of the second se
 - Extrapolated resolution < 2 μm
- Steps:
 - 2007: demonstrator
 - analog output
 - 2009: final telescope
 - $\hfill\square$ Digital output with zero suppression (t_{int} ~ 100 μs)
 - □ Surface: ~1x2 cm²

HFT at 2.5 and 7(!) cm

IST at 14 cm

Two sensors have similar spec.

- STAR final sensors (Ultimat) spec.:
 - Active surface:
 - Total ionizing dose:
 - Non-ionizing radiation dose:
 - Hit density:
 - Readout (integration) time:
 - Power consumption:

Design according to 3 issues:

- Increasing S/N at pixel-level
- A to D Conversion at column-level
- Sero suppression at chip edge level
- Power v.s. speed:
 - Speed → 1 row pixels are read out //
- Architecture was validated by 2 prototypes:
 - **Mimosa22: pixels and A to D conversion**
 - **576x128**, pixel pitch 18.4 μm
 - **SUZE: zero suppression**

- ~2x2 cm² (EUDET: ~1x2 cm²) 150-300 kRad per year charged pions <~ O(10¹³) / year 10⁶ hits/s/cm²
- ~200 µs
- ~100 mW/cm²

In Pixel amplification & Signal Processing

- Pixel design:
 - Solution S/N
 - Solution Amplification in pixel: improve S/N
 - Sorrelated double sampling (CDS) in 2 levels: pixel, discriminator

In Pixel amplification & Signal Processing (2)

Common Source (CS) amplification in pixel

Only NMOS transistors can be used

In Pixel amplification & Signal Processing (3)

Measured Mimosa22 pixel (Amp+CDS) performances (20 °C) before irradiation:

Pixel types	Diode size (µm²)	CVF* (µV/e⁻)	ENC (e -)
CS + Reset	15.21	57.3	13.3 🕈 0.1
Improved CS + Reset 2	15.21	57.3	13.0 🕈 0.1
Improved CS + Feedback + self biased 3	14.62	55.8	12.3 + 0.1

After ionizing irradiation, feedback self-biased structure 3 has the best performances

Increasing Radiation Tolerance in Pixel

- Non-ionizing radiation tolerance:
 - Seducing pixel pitch → pitch < 20 µm → 18.4 µm</p>
 - Increasing sensing diode size: limited by layout
 - Seducing integration time → ~100-200 µs

A/D conversion: Column-level discriminators

- Choice of number of bits depends on the required spatial resolution and on the pixel pitch
 - Solutions → 1 bit → discriminator

Discriminator design considerations:

- Small input signal → Offset compensated amplifier stage
- 🤟 Dim: 16.4 x 430 μm²
- Conversion time = row read out time (~200 ns)
- Sonsumption ~230 μW

- Measurement results of 128 column-level discriminators (Mimosa22):
 - S Temporal Noise: 0.35 mV
 - Fixed Pattern Noise (FPN): 0.2 mV

Mimosa22 preliminary test results: Pixels + 128 Discriminators

Zero Suppression (SUZE)

- Connected to column-level discriminators outputs
- Zero suppression is based on row by row sparse data scan readout and organized in pipeline mode in three stages
 - ✤ 1st stage:
 - 1152 columns terminations →18 banks // scan
 - Based on priority look ahead encoding
 - Find up to N states with column addresses per bank
 - ✤ 2nd stage:
 - Read out outcomes of stage 1 in all banks and keep up to M states
 - Add row and bank addresses
 - Is the stage i
 - Store outcomes to a memory
 - memory made of 2 IP's buffers → continuous RO
 - 1 buffer stores present frame,
 1 buffer is read out previous frame
 - Serial transmission by 1 or 2 LVDS at up to 160 MHz
- SUZE: all critical paths of design pass test
- Power estimation for full size sensor: 135 mW

Floor Plan of a typical final sensor

Conclusion

- Sensor's architecture suitable for:
 - **STAR vertex detector upgrade**
 - Section Sec
- Development of final sensors for both EUDET and STAR is in progress
 - ✤ Final sensors for EUDET before end of 2008
 - **Ultimate sensors for STAR in 2009**
- Readout speed: 10 k frame/s (EUDET)
- Still need to improve power budget for STAR application

• extra

Zero suppression

Pixel array : 576 x 1152 pixels (EUDET) 1024 x 1152 pixels (STAR) Readout row by row The row is divided into 18 banks

Analog to digital conversion at the bottom of each column (Discriminator or ADC)

Zero suppression algorithm :

Find N Hits for each group Find M Hits for each row (With N and M determined by pixel array occupancy rate)

Memory witch stores M hits Memory 0 for frame N Memory 1 for frame N-1 Serial transmission by LVDS

