

System Tests with DC-DC Converters for the CMS Silicon Strip Tracker at \(\bigsig\)-LHC

Lutz Feld, Rüdiger Jussen, Waclaw Karpinski, Katja Klein, Jennifer Merz, Jan Sammet

1. Physikalisches Institut B RWTH Aachen University

Topical Workshop on Electronics for Particle Physics Naxos, Greece September 17th, 2008

Outline

- Powering the CMS Silicon Strip Tracker
- DC-DC Conversion
- System Test Measurements
 - Commercial converters
 - with internal ferrite inductors
 - with external air-core inductors
 - Custom converters
 - CERN SWREG2 buck converter
 - LBNL charge pump
- Summary & Outlook

Strip tracker with cables, waiting for installation

Current Strip Tracker Power Consumption

- Groups of 2-12 modules are powered in parallel
- Powered via ≈ 50m long cables from power supplies (PS) on balconies
 ⇒ Power loss in cables amounts to 34kW = 50% of total power
- Complex routing of services; exchange for SLHC not considered an option

Strip Tracker Upgrade

- Design of CMS tracker upgrade still under discussion
- Smaller feature size (probably 0.13μm) saves power per channel
- Increase of granularity and complexity costs power
- Material budget must not increase and services shall be recycled
 ⇒ new powering schemes need to be exploited
- R&D on powering is ramping up, a CMS Working Group exists since April 2008 (contact: KK)

Material Budget Strip

DC-DC Conversion Basics

Buck converter: simplest ind.-based step-down converter

- Many technologies and designs (inductor-based, capacitor-based, piezo...)
- + Classical way of module operation, powering "factorizes" from system & module design
- + Different voltages can be provided by the same circuit
- + Flexible: several conversion steps (i.e. on substructure and on module) can be combined
- High frequency switching present in all designs → switching noise to be expected
- Efficiency typically 70-90%
- Transistors must stand high $V_{\text{in}} \rightarrow \text{non-standard chip technology to be used}$
- Ferrites saturate in magnetic field → inductors must have air-cores → radiation of noise

The System Test

Goal:

Understand if and how DC-DC conversion could be used to power the upgrade strip tracker; identify potential show-stoppers

- Prototypes of tracker upgrade readout chips, modules or substructures do not yet exist
 ⇒ current tracker hardware must be used!
- Avoid to "tune" R&D to current system
- Still a lot can be learned with current system
- Tracker end-cap (TEC) "petal" with four modules powered & read out
- Optical readout & control communication
- Thermally stabilized at +15°C

A Current CMS Strip Tracker Module

Frontend-Hybrid with

- 4 or 6 APV25 readout chips

- PLL chip for timing
- Multiplexer chip
- DCU chip for control

APV25 readout chip:

- 0.25 μm CMOS
- 128 strips per APV
- analogue readout
- per channel: pre-amplifier, CR-RC shaper, 4 µs pipeline
- $\tau = 50$ ns

- Currents per APV: 0.12A at 2.5V and 0.06A at 1.25V
- Power consumption of 4 (6) APV module including optical conversion: 1.8W (2.7W)

Definitions and Analysis

- Pedestal = mean signal of a strip without a particle traversing the sensor
- Raw (or total) noise = RMS of fluctuation around pedestal value
- Common mode (CM) = common fluctuation of subset of strips, calculated per APV
- The raw noise includes the common mode contribution
- One module has four APVs a 128 strips = 512 strips
- Most tests performed in "peak mode" = 1 sample read out per event

System Test with DC-DC Converters

Measurements with commercial buck converters with internal ferrite-core inductor

Commercial Buck Converter EN5312QI

Criteria for market survey:

- High switching frequency → small size of passive components
- High conversion factor
- Sufficient current (~1A) and suitable output voltages (1.25V and 2.5V)

⇒ Enpirion EN5312QI:

- Small footprint: 5mm x 4mm x 1.1mm
- Switching frequency f_s ≈ 4 MHz
- $-V_{in} = 2.4V 5.5V (rec.) / 7.0V (max.)$
- $-I_{out} = 1A$
- Integrated planar inductor

Internal inductor in MEMS technology

Integration onto TEC Petal

- 4-layer PCB with 2 converters provides 1.25V and 2.5V for front-end (FE) hybrid
- One PCB per module, plugged between motherboard and FE-hybrid
- Input and output filter capacitors on-board
- Input power (V_{in} = 5.5V) provided externally or via TEC motherboard
- Various designs (type L: larger board with integrated connector, type S: smaller board with separate connector)

Raw Noise with DC-DC Converter

- Raw noise increases by up to 10%
- Large impact of PCB design and connectorization
- Broader common mode distribution
- Most optimization studies performed with L

Edge Channels with DC-DC Converter

- 128 APV inverter stages powered via common resistor ⇒ on-chip common mode subtraction
- CM appears on strips that see different CM than regular channels (open & edge channels)
- Huge increase of noise at module edges and open strips with DC-DC converter
- Indicates that large fraction of CM (both via 1.25V & 2.5V) is already subtracted on-chip
- Visible common mode in noise distributions probably coupled in after inverter (via 2.5V line)

Cross-Talk

Two adjacent modules (6.3, 6.4) powered with EN5312QI converters

⇒ study correlations between pairs of strips i, j (r = raw data):

$$corr_{ij} = (\langle r_i r_j \rangle - \langle r_i \rangle \langle r_j \rangle) / (\sigma_i \sigma_j)$$

- ⇒ High correlations only within single modules (= common mode)
- ⇒ No cross-talk between neighbouring modules

Converter Noise Spectra

Standardized EMC set-up to measure **Differential & Common Mode** noise spectra (similar to set-up at CERN)

Combination with Low DropOut Regulator

Ripple Rejection

60

50

- Low DropOut Regulator (LDO) connected to output of EN5312QI DC-DC converter
- Linear technology VLDO regulator LTC3026
- LDO reduces voltage ripple and thus noise significantly
 ⇒ Noise is mainly conductive and differential mode
- Would require a rad.-hard LDO with very low dropout

System Test with DC-DC Converters

Measurements with commercial buck converters with external air-core inductor

External Air-Core Inductor

Enpirion **EN5382D** (similar to EN5312QI) operated with **external inductor**:

- Air-core inductor Coilcraft 132-20SMJLB;
 L = 538nH
- Ferrite-core inductor Murata LQH32CN1R0M23; $L = 1 \mu H$

From data sheet

Air-core inductor

Ferrite-core inductor

External Air-Core Inductor

• Huge wing-shaped noise induced by air-core inductor, even on neighbour-module.

- Conductive part increases as well
- Both shapes not yet fully understood
- LDO leads only to marginal improvement
- Slight improvement with toroids (see back-up)

Radiative Noise from Air-Core Coil

Module "irradiated" with detached converter board

Mean noise of 6.4 [ADC counts]

without converter

Reference

- Increase of mean noise even if converter is not plugged → noise is radiated
- Noise pick-up not in sensor but close to APVs

Shielding the DC-DC Converter

- Enpirion with air-core solenoid wrapped in copper or aluminium foil
 - ✓ Floating shield helps ⇒ magnetic coupling
 - ✓ Aluminium shields as good as copper
 - ✓ No further improvement for thickness > 30µm
- Shielding increases the material budget
 - Contribution of 3x3x3cm³ box of 30μm alum. for one TEC: 1.5kg

Distance betw. Converter and FE-Hybrid

- The distance between converter and FE-hybrid has been varied using a cable between board and connector
- Sensitivity to distance is very high!
- Effect is a combination of distance and additional filtering
- Placing the buck converter at edge of substructure is an option

Type L with Solenoid

Type S' with Solenoid

Type S' 4cm further away

System Test with DC-DC Converters

Measurements with custom DC-DC converters

The CERN SWREG2 Buck Converter

- Single-phase buck PWM Controller with Int. MOSFET dev. by CERN (F. Faccio et al.)
- HV compatible AMI Semiconductor I3T80 technology based on 0.35 μm CMOS
- Many external components for flexibility
- PCB designed by RWTH Aachen University

S. Michelis (CERN) et al., *Inductor based switching DC-DC converter for low voltage power distribution in SLHC*, TWEPP 2007; and poster 24 at TWEPP 08.

The CERN SWREG2 Buck Converter

- PCB located far away from module
 ⇒ conductive noise measured
- SWREG2 provides only 2.5V to FE-hybrid
- Noise increases by about 20%
- 8-strip ripple structure understood to be artefact of strip order during multiplexing; converters affects readout stages of APV

The LBNL Charge Pump

- Simple **capacitor-based** step-down converter: capacitors charged in series and discharged in parallel $\rightarrow I_{out} = n \cdot I_{in}$, with n = number of parallel capacitors
- At **LBNL** (M. Garcia-Sciveres et al.) a n = 4 prototype IC in 0.35 μ m CMOS process (H35) with external 1 μ F flying capacitors has been developed (0.5A, 0.5MHz)

Phase B

Pros:

No air-core coil → less noise, less material

Cons

- Switches must be rad.-hard and HV safe
- Many switches → mat. budget, switching losses
- Switching noise
- Restricted to low power applications
- No feedback control

P. Denes, R. Ely and M. Garcia-Sciveres (LBNL), A Capacitor Charge Pump DC-DC Converter for Physics Instrumentation, submitted to IEEE Transactions on Nuclear Science, 2008.

The LBNL Charge Pump

- Two converters connected in parallel: tandem-converter
 - $-f_s = 0.5MHz$ (per converter)
 - In-phase and alternating-phase versions
- Tandem-converter connected either to 2.5V or 1.25V
- Noise increases by about 20% for alternating phase
- Next step: combination with LDO

Summary & Outlook

- Using commercial buck converters, we have gained first experience with DC-DC conversion and the associated problems
- Measures to minimize conductive and radiative noise have been studied
- Radiated noise appears to be biggest draw-back of ind.-based topologies;
 but operation at the edge of the substructure seems feasible
- Tests of first prototypes of custom converters has started & will continue
 - Buck converter from CERN, charge pump from LBNL group
- A radiation-hard LDO would be beneficial
- Noise susceptibility studies are planned to understand better the effects
- A realistic powering scheme, including also power for optical components, bias voltage and controls, has to be worked out

Thanks to F. Faccio et al. (CERN) and M. Garcia-Sciveres et al. (LBNL) for providing the converter protoypes!

Back-up Slides

Raw Noise on Different Positions

On position 6.1 type L does not fit

Noise versus Conversion Ratio (V_{out}/V_{in})

- V_{out} fixed to 1.25V & 2.5V \Rightarrow change of V_{in} leads to change of conv. ratio $r = V_{out} / V_{in}$
- Output ripple δV_{out} depends on duty cycle D (D = r for buck converter):

$$\delta V_{out} \sim \frac{1}{LC_{out}} \frac{1}{f_s^2} \frac{V_{out}}{V_{in}} (V_{in} - V_{out}) \Rightarrow \frac{\delta V_{out}}{V_{out}} \sim (1 - D) \frac{1}{LC_{out}} \frac{1}{f_s^2}$$

⇒ Mean noise increases for lower conversion ratio

Other Commercial Converters: MIC3385

Are we looking at a particularly noisy commercial device? ⇒ Micrel MIC3385

- $-f_s = 8 MHz$
- $-V_{in} = 2.7-5.5 V$
- footprint 3 x 3.5 mm²

⇒ No evidence that EN5312QI is exceptionally noisy

Converter Noise Spectra

Standardized EMC set-up to measure **Differential & Common Mode** noise spectra (similar to set-up at CERN)

Correlations with External Air-Core Inductor

Per APV:

- two halfs of 64 strips
- strips within each half are highly correlated (90%),
- but two halfs are strongly anti-correlated (-80%)
- 50% correlations also on module 6.3 (no converter)

External Air-Core Toroids

- As expected, toroid coils radiate less than solenoids
- Significant improvement already observed with simple self-made toroid coil
- Coil design being systematically studied by D. Cussans et al. (Bristol) (Poster 107)

Toroid wiggled from copper wire

Toroid wiggled from copper strip

