PMF: front end board for the ATLAS Luminometer ALFA

TWEPP 2008 – 19th September 2008
Parallel Session B6 – Programmable logic, boards, crates and systems

ATLAS Luminometer

- Goal: measure the absolute luminosity of ATLAS detector at the LHC looking at elastically diffused protons.
- ALFA (Absolute Luminosity For ATLAS) detector is made of 8 Roman Pots located at 240 m from the ATLAS interaction point.
- Each RP is made of 20 layers (10 in U and 10 in V) of 64 scintillating fibers connected to a MAPMT.
- The front end electronic is located in a matrix directly in the shadow of the PMs.
The front end electronic is made of a matrix of 5x5 PMFs connected by lines of 5 to the mother board (or a test board) thanks to a kapton cable.

PMF = PhotoMultiplier Front-end
PMF structure

• The PCB part of the PMF is made of 3 boards (3 × 3 cm²):
 ✓ HV board: allows bringing high voltage to the MAPMT (64ch)
 ✓ Passive board: routes signals to connectors on the edges of the board
 ✓ Active board: readout and treatment of the PM output signals successively by the MAROC ASIC on one side and a Lattice FPGA on the other side.

• A 60 points connector allows connection of the PMF with the mother board or the test board thanks to a kapton cable.

• The 3 PCBs, the cable and the test board were developed at LAL, the mother board in Lund and the Lattice firmware at CERN.
The active board

- Challenging part of the project!
- Design of a 10 layers printed circuit board with MAROC chip bounded (at CERN) directly on the PCB on one side and a FPGA/BGA on the other side.
- Different types of crossing vias
- Limited space available for the other components (connectors, capacitors, resistors) and the test points.
MAROC description

- MAROC (Multi Anode ReadOut Chip) is a 64 ch ASIC which has a variable gain preamplifier and produces 64 trigger outputs and a multiplexed charge measurement.

→ Variable gain preamplifier (6 bits)
→ Super common base inputs:
 ✓ Low impedance (50-100 Ω) tunable
 ✓ Low bias current (20μA)
Laboratory tests of the first prototypes

- The tests were carried out at LAL in collaboration with CERN
- At first: development of both test board (Xilinx) and PMF (Lattice) FPGA firmwares as well as the test software.
- Then: tests of the different PMF features (hits and charge measurements) with prototype couples passive/active boards
Results (prototype tests)

Tests of 5 PMFs:

- DAC linearity as satisfactory as for MAROC2 (< ± 1 %)
- Homogeneous fast shaper pedestals (dispersion = 1 ‰)
- Nice homogeneity of the s-curves
- Cross talk at same level as MAROC2 (2-3 %)
- Charge measurement: good linearity

![Graphs and diagrams showing test results for PMFs](image-url)
Tests with full PMF + LED

- Tests carried out at CERN with a full PMF (PMT + 3 PCBs) and a LED lighting up a single channel or all of them.
- The whole system works correctly and as expected.
- Gain correction is efficient.

Before gain correction:
Mean = 37.5 %
RMS = 4.9
Dispersion = 13.3 %

Before gain correction:
Mean = 35.8 %
RMS = 1.3
Dispersion = 3.8 %
Test beam preparation

- 28 (23 needed) pre-series active, passive and HV boards were produced to equip a full roman pot together with the mother board.
- All active boards were tested (coupled with a passive board) at LAL before shipping to CERN and found ok for installation.
August 2008 beam tests

- Carried out at CERN.
- Matrix of 23 PMFs readout by the last version of the mother board or 2 test boards (by group of $2 \times 5 = 10$ PMFs)
- Offline analysis ongoing. Online one showed nice reconstruction of the beam position
- All PMFs worked nicely as well as the kapton cables
Conclusions

- PMFs showed excellent performances with and without PMT
- The group kapton cable + 5 PMFs works well
- A nice homogeneity was observed between all PMFs tested
- Just a few (7) channels cold or hot among 1792 tested
- Protection of the ASIC with so-called jaja seems suitable
- For the first a full matrix of 23 PMFs was tested with beam

Future:
- Production of the 184 PMFs needed for the 8 final roman pots
- Series test of the active boards produced